版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.下列事件是必然事件的是()A.某人體溫是100℃ B.太陽從西邊下山C.a(chǎn)2+b2=﹣1 D.購買一張彩票,中獎2.一元二次方程的常數(shù)項是()A. B. C. D.3.在一個有10萬人的小鎮(zhèn),隨機調(diào)查了1000人,其中有120人周六早上觀看中央電視臺的“朝聞天下”節(jié)目,那么在該鎮(zhèn)隨便問一個人,他在周六早上觀看中央電視臺的“朝聞天下”節(jié)目的概率大約是()A. B. C. D.4.某人沿著斜坡前進(jìn),當(dāng)他前進(jìn)50米時上升的高度為25米,則斜坡的坡度是()A. B.1:3 C. D.1:25.如圖,□ABCD的對角線AC,BD交于點O,CE平分∠BCD交AB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF?DF.其中正確的是()A.①②④ B.①③④ C.②③④ D.①③6.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位7.若反比例函數(shù)的圖像經(jīng)過點,則下列各點在該函數(shù)圖像上的為()A. B. C. D.8.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為()A.3 B. C. D.29.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.10.如圖,AB是⊙O的直徑,CD⊥AB,∠ABD=60°,CD=2,則陰影部分的面積為()A. B.π C.2π D.4π二、填空題(每小題3分,共24分)11.小慧準(zhǔn)備給媽媽打個電話,但她只記得號碼的前位,后三位由,,這三個數(shù)字組成,具體順序忘記了,則她第一次試撥就撥通電話的概率是________.12.△ABC是等邊三角形,點O是三條高的交點.若△ABC以點O為旋轉(zhuǎn)中心旋轉(zhuǎn)后能與原來的圖形重合,則△ABC旋轉(zhuǎn)的最小角度是____________.13.如圖,AD與BC相交于點O,如果,那么當(dāng)?shù)闹凳莀____時,AB∥CD.14.已知∽,若周長比為4:9,則_____________.15.如圖所示的的方格紙中,如果想作格點與相似(相似比不能為1),則點坐標(biāo)為___________.16.方程x2﹣4x﹣6=0的兩根和等于_____,兩根積等于_____.17.在中,若、滿足,則為________三角形.18.如圖,四邊形ABCD是邊長為4的正方形,若AF=3,E為AB上一個動點,把△AEF沿著EF折疊,得到△PEF,若△BPE為直角三角形,則BP的長度為_____.三、解答題(共66分)19.(10分)一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.(1)求任意摸出一球是白球的概率;(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.20.(6分)某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進(jìn)行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,回答下列問題:(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為度,并將條形統(tǒng)計圖補充完整.(2)此次比賽有三名同學(xué)得滿分,分別是甲、乙、丙,現(xiàn)從這三名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丙的概率.21.(6分)某班“數(shù)學(xué)興趣小組”對函數(shù)的圖像和性質(zhì)進(jìn)行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值列表如下:其中,________________.(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖像的一部分,請畫出該圖像的另一部分;(3)觀察函數(shù)圖像,寫出兩條函數(shù)的性質(zhì);(4)進(jìn)一步探究函數(shù)圖像發(fā)現(xiàn):①方程有______個實數(shù)根;②函數(shù)圖像與直線有_______個交點,所以對應(yīng)方程有_____個實數(shù)根;③關(guān)于的方程有個實數(shù)根,的取值范圍是___________.22.(8分)如圖,已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點.(1)求拋物線的解析式和A、B兩點的坐標(biāo);(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求M點的坐標(biāo).23.(8分)如圖,在Rt△ABC中,∠ACB90°,∠ABC的平分線BD交AC于點D.(1)求作⊙O,使得點O在邊AB上,且⊙O經(jīng)過B、D兩點(要求尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)證明AC與⊙O相切.24.(8分)如圖,平面直角坐標(biāo)系內(nèi),二次函數(shù)的圖象經(jīng)過點,與軸交于點.求二次函數(shù)的解析式;點為軸下方二次函數(shù)圖象上一點,連接,若的面積是面積的一半,求點坐標(biāo).25.(10分)如圖1,拋物線與x軸交于A、B兩點(點A在x軸的負(fù)半軸),與y軸交于點C.拋物線的對稱軸交拋物線于點D,交x軸于點E,點P是線段DE上一動點(點P不與DE兩端點重合),連接PC、PO.(1)求拋物線的解析式和對稱軸;(1)求∠DAO的度數(shù)和△PCO的面積;(3)在圖1中,連接PA,點Q是PA的中點.過點P作PF⊥AD于點F,連接QE、QF、EF得到圖1.試探究:是否存在點P,使得,若存在,請求點P的坐標(biāo);若不存在,請說明理由.26.(10分)某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進(jìn)行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):第一次第二次第三次第四次甲9887乙10679(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;(2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認(rèn)為推薦誰參加省比賽更合適?請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)必然事件的特點:一定會發(fā)生的特點進(jìn)行判斷即可【詳解】解:A、某人體溫是100℃是不可能事件,本選項不符合題意;B、太陽從西邊下山是必然事件,本選項符合題意;C、a2+b2=﹣1是不可能事件,本選項不符合題意;D、購買一張彩票,中獎是隨機事件,本選項不符合題意.故選:B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件,不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、A【分析】在一元二次方程的一般形式下,可得出一元二次方程的常數(shù)項.【詳解】解:由,所以方程的常數(shù)項是故選A.【點睛】本題考查的是一元二次方程的一般形式及各項系數(shù),掌握以上知識是解題的關(guān)鍵.3、C【解析】試題解析:由題意知:1000人中有120人看中央電視臺的早間新聞,∴在該鎮(zhèn)隨便問一人,他看早間新聞的概率大約是.故選C.【點睛】本題考查概率公式和用樣本估計總體,概率計算一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.4、A【分析】根據(jù)題意,利用勾股定理可先求出某人走的水平距離,再求出這個斜坡的坡度即可.【詳解】解:根據(jù)題意,某人走的水平距離為:,∴坡度;故選:A.【點睛】此題主要考查學(xué)生對坡度的理解,在熟悉了坡度的定義后利用勾股定理求得水平距離是解決此題的關(guān)鍵.5、B【分析】①正確.只要證明EC=EA=BC,推出∠ACB=90°,再利用三角形中位線定理即可判斷.
②錯誤.想辦法證明BF=2OF,推出S△BOC=3S△OCF即可判斷.
③正確.設(shè)BC=BE=EC=a,求出AC,BD即可判斷.
④正確.求出BF,OF,DF(用a表示),通過計算證明即可.【詳解】解:∵四邊形ABCD是平行四邊形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等邊三角形,
∴EB=BC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,
∵OA=OC,EA=EB,
∴OE∥BC,
∴∠AOE=∠ACB=90°,
∴EO⊥AC,故①正確,
∵OE∥BC,
∴△OEF∽△BCF,
∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故②錯誤,
設(shè)BC=BE=EC=a,則AB=2a,AC=a,OD=OB=a,
∴BD=a,
∴AC:BD=a:a=:7,故③正確,
∵OF=OB=a,
∴BF=a,
∴BF2=a2,OF?DF=a?a2,
∴BF2=OF?DF,故④正確,
故選:B.【點睛】此題考查相似三角形的判定和性質(zhì),平行四邊形的性質(zhì),角平分線的定義,解直角三角形,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)解決問題.6、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點,故D符合題意;故選D.7、C【分析】將點代入求出反比例函數(shù)的解析式,再對各項進(jìn)行判斷即可.【詳解】將點代入得解得∴只有點在該函數(shù)圖象上故答案為:C.【點睛】本題考查了反比例函數(shù)的問題,掌握反比例函數(shù)的性質(zhì)以及應(yīng)用是解題的關(guān)鍵.8、A【詳解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圓中同弧所對的圓周角,∴∠D=∠C=10°.∵AD為直徑,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故選A.9、C【分析】由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【詳解】∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.10、A【解析】試題解析:連接OD.∵CD⊥AB,故,即可得陰影部分的面積等于扇形OBD的面積,又∴OC=2,∴S扇形OBD即陰影部分的面積為故選A.點睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.二、填空題(每小題3分,共24分)11、【解析】首先根據(jù)題意可得:可能的結(jié)果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【詳解】∵她只記得號碼的前5位,后三位由5,1,2,這三個數(shù)字組成,∴可能的結(jié)果有:512,521,152,125,251,215;∴他第一次就撥通電話的概率是:故答案為.【點睛】考查概率的求法,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的之比.12、120°.【解析】試題分析:若△ABC以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)后能與原來的圖形重合,根據(jù)旋轉(zhuǎn)變化的性質(zhì),可得△ABC旋轉(zhuǎn)的最小角度為180°﹣60°=120°.故答案為120°.考點:旋轉(zhuǎn)對稱圖形.13、【分析】如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊,據(jù)此可得結(jié)論.【詳解】,當(dāng)時,,.故答案為.【點睛】本題主要考查了平行線分線段成比例定理,解題時注意:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊.14、4:1【分析】根據(jù)相似三角形周長的比等于相似比解答即可.【詳解】∵△ABC∽△DEF,∴.故答案為:4:1.【點睛】本題考查了相似三角形的性質(zhì),牢記相似三角形(多邊形)的周長的比等于相似比是解題的關(guān)鍵.15、(5,2)或(4,4).【分析】要求△ABC與△OAB相似,因為相似比不為1,由三邊對應(yīng)相等的兩三角形全等,知△OAB的邊AB不能與△ABC的邊AB對應(yīng),則AB與AC對應(yīng)或者AB與BC對應(yīng)并且此時AC或者BC是斜邊,分兩種情況分析即可.【詳解】解:根據(jù)題意得:OA=1,OB=2,AB=,∴當(dāng)AB與AC對應(yīng)時,有或者,∴AC=或AC=5,∵C在格點上,∴AC=(不合題意),則AC=5,如圖:∴C點坐標(biāo)為(4,4)同理當(dāng)AB與BC對應(yīng)時,可求得BC=或者BC=5,也是只有后者符合題意,如圖:此時C點坐標(biāo)為(5,2)∴C點坐標(biāo)為(5,2)或(4,4).故答案為:(5,2)或(4,4).【點睛】本題結(jié)合坐標(biāo)系,重點考查了相似三角形的判定的理解及運用.16、4﹣6【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得答案.【詳解】設(shè)方程的兩個根為x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案為4,﹣6【點睛】本題考查一元二次方程根與系數(shù)的關(guān)系,若一元二次方程y=ax2+bx+c(a≠0)的兩個根為x1、x2,那么,x1+x2=-,x1·x2=;熟練掌握韋達(dá)定理是解題關(guān)鍵.17、直角【分析】先根據(jù)非負(fù)數(shù)的性質(zhì)及特殊角的三角函數(shù)值求得∠A和∠B,即可作出判斷.【詳解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,
∴,
∴△ABC是直角三角形.
故答案為:直角.【點睛】本題考查了特殊角的三角函數(shù)值,非負(fù)數(shù)的性質(zhì)及三角形的內(nèi)角和定理,根據(jù)非負(fù)數(shù)的性質(zhì)及特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),是解題的關(guān)鍵.18、2或.【分析】根據(jù)題意可得分兩種情況討論:①當(dāng)∠BPE=90°時,點B、P、F三點共線,②當(dāng)∠PEB=90°時,證明四邊形AEPF是正方形,進(jìn)而可求得BP的長.【詳解】根據(jù)E為AB上一個動點,把△AEF沿著EF折疊,得到△PEF,若△BPE為直角三角形,分兩種情況討論:①當(dāng)∠BPE=90°時,如圖1,點B、P、F三點共線,根據(jù)翻折可知:∵AF=PF=3,AB=4,∴BF=5,∴BP=BF﹣PF=5﹣3=2;②當(dāng)∠PEB=90°時,如圖2,根據(jù)翻折可知:∠FPE=∠A=90°,∠AEP=90°,AF=FP=3,∴四邊形AEPF是正方形,∴EP=3,BE=AB﹣AE=4﹣3=1,∴BP===.綜上所述:BP的長為:2或.故答案為:2或.【點睛】本題主要考查了折疊的性質(zhì)、正方形的性質(zhì)一勾股定理的應(yīng)用,熟練掌握相關(guān)知識是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2)【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)任意摸出一球是白球的概率=;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩次摸出都是紅球的結(jié)果數(shù)為6,∴兩次摸出都是紅球的概率==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1)72,圖詳見解析;(2).【分析】(1)先畫出條形統(tǒng)計圖,再求出圓心角即可;(2)先畫出樹狀圖,再求出概率即可.【詳解】(1)條形統(tǒng)計圖為;;扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案為:72;(2)畫樹狀圖:由樹狀圖可知:所有等可能的結(jié)果有6種,其中符合條件的有2種,所有P(甲、丙)==,即選中的兩名同學(xué)恰好是甲、丙的概率是.【點睛】本題考查了樹狀圖、條形統(tǒng)計圖和扇形統(tǒng)計圖等知識點,能畫出條形圖和樹狀圖是解此題的關(guān)鍵.21、(1)-1;(2)見解析;(1)函數(shù)的圖象關(guān)于y軸對稱;當(dāng)x>1時,y隨x的增大而增大;(4)①2;②1,1;③-4<a<-1【分析】(1)由題意觀察表格根據(jù)函數(shù)的對稱性即可求得m的值;(2)根據(jù)題意代入表格數(shù)據(jù)進(jìn)行描點、連線即可得到函數(shù)的圖象;(1)由題意根據(jù)題干所給的函數(shù)圖象性質(zhì)進(jìn)行分析即可;(4)①根據(jù)函數(shù)圖象與x軸的交點個數(shù),即可得到結(jié)論;②根據(jù)的圖象與直線y=-1的交點個數(shù),即可得到結(jié)論;③根據(jù)函數(shù)的圖象即可得到a的取值范圍.【詳解】解:(1)觀察表格根據(jù)函數(shù)的對稱性可得m=-1;(2)如圖所示;(1)由函數(shù)圖象知:①函數(shù)的圖象關(guān)于y軸對稱;②當(dāng)x>1時,y隨x的增大而增大;(4)①函數(shù)圖象與x軸有2個交點,所以對應(yīng)的方程有2個實數(shù)根;②由函數(shù)圖象知:的圖象與直線y=-1有1個交點,∴方程有1個實數(shù)根;③由函數(shù)圖象知:∵關(guān)于x的方程x2-2-1=a有4個實數(shù)根,∴a的取值范圍是-4<a<-1,故答案為:2,1,1,-4<a<-1.【點睛】本題考查二次函數(shù)的圖象和性質(zhì),運用數(shù)形結(jié)合思維分析以及正確的識別圖象是解題的關(guān)鍵.22、(1),點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(8,0);(2)存在點P,使△PBC的面積最大,最大面積是16,理由見解析;(3)點M的坐標(biāo)為(4-2,)、(2,6)、(6,4)或(4+2,-).【分析】(1)由拋物線的對稱軸為直線x=3,利用二次函數(shù)的性質(zhì)即可求出a值,進(jìn)而可得出拋物線的解析式,再利用二次函數(shù)圖象上點的坐標(biāo)特征,即可求出點A、B的坐標(biāo);(2)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),由點B、C的坐標(biāo),利用待定系數(shù)法即可求出直線BC的解析式,假設(shè)存在,設(shè)點P的坐標(biāo)為(x,),過點P作PD//y軸,交直線BC于點D,則點D的坐標(biāo)為(x,),PD=-x2+2x,利用三角形的面積公式即可得出三角形PBC的面積關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;(3)設(shè)點M的坐標(biāo)為(m,),則點N的坐標(biāo)為(m,),進(jìn)而可得出MN,結(jié)合MN=3即可得出關(guān)于m的含絕對值符號的一元二次方程,解之即可得出結(jié)論.【詳解】(1)拋物線的對稱軸是直線,,解得:,拋物線的解析式為.當(dāng)時,,解得:,,點的坐標(biāo)為,點的坐標(biāo)為.(2)當(dāng)時,,點的坐標(biāo)為.設(shè)直線的解析式為.將、代入,,解得:,直線的解析式為.假設(shè)存在,設(shè)點的坐標(biāo)為,過點作軸,交直線于點,則點的坐標(biāo)為,如圖所示.,.,當(dāng)時,的面積最大,最大面積是16.,存在點,使的面積最大,最大面積是16.(3)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,.又,.當(dāng)時,有,解得:,,點的坐標(biāo)為或;當(dāng)或時,有,解得:,,點的坐標(biāo)為,或,.綜上所述:點的坐標(biāo)為,、、或,.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)求出a的值;(2)根據(jù)三角形的面積公式找出關(guān)于x的函數(shù)關(guān)系式;(3)根據(jù)MN的長度,找出關(guān)于m的含絕對值符號的一元二次方程.23、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線交AB于O,再以O(shè)點為圓心,OB為半徑作圓即可;(2)證明OD∥BC得到∠ODC=90°,然后根據(jù)切線的判定定理可判斷AC為⊙O的切線.【詳解】解:(1)如圖,⊙O為所作;
(2)證明:連接OD,如圖,
∵BD平分∠ABC,
∴∠CBD=∠ABD,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠CBD=∠ODB,
∴OD∥BC,
∴∠ODA=∠ACB,
又∠ACB=90°,
∴∠ODA=90°,
即OD⊥AC,
∵點D是半徑OD的外端點,
∴AC與⊙O相切.【點睛】本題考查了作圖—復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了切線的判定.24、(1);(2)點坐標(biāo)為或【分析】(1)根據(jù)A、B、C三點坐標(biāo),運用待定系數(shù)法即可解答;(2)由的面積是面積的一半,則D點的縱坐標(biāo)為-3,令y=3,求得x的值即為D點的縱坐標(biāo).【詳解】解:設(shè)D的坐標(biāo)為(x,yD)∵的面積是面積的一半∴,又∵點在軸下方,即.令y=-3,即解得:,,∴點坐標(biāo)為或【點睛】本題主要考查了求二次函數(shù)解析式和三角形的面積,確定二次函數(shù)解析式并確定△ABD的高是解答本題的關(guān)鍵.25、(1);;(1)45°;;(3)存在,【分析】(1)把C點坐標(biāo)代入解出解析式,再根據(jù)對稱軸即可解出.(1)把A、D、E、C點坐標(biāo)求出后,因為AE=DE,且DE⊥AE,所以∠DAO=,P點y軸的距離等于OE,即可算出△POC的面積.(3)設(shè)出PE=m,根據(jù)勾股定理用m表示出PA,根據(jù)直角三角形斜邊中線是斜邊的一半可以證明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因為∠DAO=,再根據(jù)角的關(guān)系可以證明△FEQ是等腰直角三角形,再根據(jù),解出m即可.可以通過圓的性質(zhì),來判斷△FEQ是等腰直角三角形,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年甘肅省甘南自治州公開招聘警務(wù)輔助人員筆試自考題2卷含答案
- 2022年四川省雅安市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年浙江省湖州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 晨會主持發(fā)言稿
- 廣西梧州市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版隨堂測試(下學(xué)期)試卷及答案
- 2024年姿態(tài)控制推力器、推進(jìn)劑貯箱項目資金需求報告代可行性研究報告
- 《應(yīng)收款項新》課件
- 《稱贊教學(xué)》課件
- 2025年毛紡織、染整加工產(chǎn)品項目立項申請報告模范
- 2025年水乳型涂料項目提案報告模范
- 教育理念和教育方法
- 九小場所安全檢查表
- 第四代住宅百科知識講座
- 2022-2023學(xué)年佛山市禪城區(qū)六年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 《廣聯(lián)達(dá)培訓(xùn)教程》課件
- 揚州育才小學(xué)2023-2024六年級數(shù)學(xué)上冊期末復(fù)習(xí)試卷(一)及答案
- 蔚藍(lán)時代有限公司員工培訓(xùn)現(xiàn)狀分析及改進(jìn)措施研究
- 浙江省溫州市2022-2023學(xué)年五年級上學(xué)期語文期末試卷(含答案)3
- 軟件系統(tǒng)實施與質(zhì)量保障方案
- 2023-2024學(xué)年度第一學(xué)期四年級數(shù)學(xué)寒假作業(yè)
- UV激光切割機市場需求分析報告
評論
0/150
提交評論