版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Speci?csofMedicalDataMiningforDiagnosisAid:ASurvey
SarahItania,b,*,FabianLecronc,PhilippeFortempsc
aFundforScienti?cResearch-FNRS(F.R.S.-FNRS),Brussels,Belgium
bFacultyofEngineering,UniversityofMons,DepartmentofMathematicsandOperationsResearch,Mons,Belgium
cFacultyofEngineering,UniversityofMons,DepartmentofEngineeringInnovationManagement,Mons,Belgium
Abstract
Dataminingcontinuestoplayanimportantroleinmedicine;speci?cally,forthedevelopmentofdiagnosisaidmodelsusedinexpertandintelligentsystems.Althoughwecan?ndabundantresearchonthistopic,cliniciansremainreluctanttousedecisionsupporttools.Socialpressureexplainspartlythislukewarmposition,butconcernsaboutreliabilityandcredibilityarealsoputforward.Toaddressthisreticence,weemphasizetheimportanceofthecollaborationbetweenbothdataminersandclinicians.Thissurveylaysthefoundationforsuchaninteraction,byfocusingonthespeci?csofdiagnosisaid,andtherelateddatamodelinggoals.Onthisregard,weproposeanoverviewontherequirementsexpectedbytheclinicians,whoareboththeexpertsandthe?nalusers.Indeed,webelievethattheinteractionwithcliniciansshouldtakeplacefromthevery?rststepsoftheprocessandthroughoutthedevelopmentofthepredictivemodels,thusnotonlyatthe?nalvalidationstage.Actually,againstacurrentresearchapproachquiteblindlydrivenbydata,weadvocatetheneedforanewexpert-awareapproach.Thissurveypaperprovidesguidelinestocontributetothedesignofdailyhelpfuldiagnosisaidsystems.
Keywords:DataMining;Medicine;DiagnosisAid;ExplainableArti?cialIntelligence
1.Introduction
Asoneofthetrendiestresearchtopicsofourcentury,DataMining(DM)makeskeycontribu-tionstothescienti?candtechnologicaladvanceinaconsiderablenumberof?elds(
Gupta
,
2014
;
PhridviRajandGuruRao
,
2014
).Coinedduringthenineties,thedisciplineissubjecttoatoughcompetitionforthedevelopmentofalgorithmsalwaysmorepowerful,whichaimatprocessingdata
*Correspondingauthor.UniversityofMons,DepartmentofMathematicsandOperationsResearch,RuedeHoudain,9,7000Mons,Belgium.
Emailaddresses:sarah.itani@umons.ac.be(SarahItani),fabian.lecron@umons.ac.be(FabianLecron),philippe.fortemps@umons.ac.be(PhilippeFortemps)
2
Numberofpublications
1200
1000
800
600
400
200
0
199019952000200520102015
Year
Figure1:EvolutionoftheannualnumberofpublicationsrelatedtomedicaldataminingintheScopusdatabase(Sco
-
pus
)onaquarterofacentury,from1990to2015
toinfersomeknowledgeintheformofpatternsand/orrelationships(
BellazziandZupan
,
2008
).Theassociatedtechniquesarederivedfromthe?eldsofbothstatisticsandMachineLearning(ML),thelatterwhichaimsatdevelopingcomputationalmethodsabletoextractgeneralizationsfromasetofdata(
Giudici
,
2005
).
MedicalapplicationsfeatureamongtheconcernsoftheDMcommunity,withasigni?cantin-creaseinresearchinterestoverthelastyears(seeFigure
1
).Thisinteractioncomesindi?erentdisciplines(
Bellazzietal.
,
2011
):atthecellularandmolecularlevel(bioinformatics);atthetis-sueandorganlevel(imaginginformatics);atthesinglepatientlevel(clinicalinformatics);atthepopulationandsocietylevel(publichealthinformatics).
Forhalfacenturynow,diagnosispredictionhasbeenaveryactiveresearchareaofclinicalinformatics(
Wagholikaretal
.,
2012
).Inthisregard,withtheadventofDM,researchhasprogres-sivelyshiftedawayfromthestatisticalapproachlongconsideredasastandardpractice.Actually,underahypothetico-deductiveprocess,statisticalanalysesaredriventocheckahypothesisstatedbeforehandanddatasamplesarecollectedforthisspecialpurpose(
Yooetal.
,
2012
).Thisstatis-ticalapproachissurelyadaptedtoraisedi?erencesbetweenpathologicalandcontrolgroups,butnottosetanindividualassessment,i.e.aclinicalexaminationpersubject.Incontrast,enrichedbyMLtechniques,DMinductivelyprocessesavoluminousamountofdata,tobothextractknowledgeanddeveloppredictivemodelsabletohelpindiagnosingpathologies(
Vieiraetal.
,
2017
;
Yooetal.
,
2012
;
BellazziandZupan
,
2008
).Insuchaprocess,statisticsmay?nditsplaceinfeatureengineer-
3
ing,beforethestageofmodelbuildingwhichismainlybasedonMLmethodsofclassi?cationorregression(
Esfandiarietal.
,
2014
).
Inthatrespect,itisthroughdataminingthatrecentworksweredevotedtotheearlydetectionofcancer,e.g.see
LyuandHaque
(
2018
);
Aliˇckovi′candSubasi
(
2017
);
Cichoszetal.
(
2016
);
Nahar
etal.
(
2016
);
Esfandiarietal.
(
2014
);
Krishnaiahetal.
(
2013
);
Parvinetal.
(
2013
);
Guptaetal
.(
2011
).Otherpathologies,suchascardiacandpulmonarydiseases,diabetes,hypertension,meningi-tisformbesidesasigni?cantpartoftheresearchformoreprecisediagnoses(
Esfandiarietal.
,
2014
).Severalpsychiatricdisorders,suchasAttentionDe?citHyperactivityDisorder(ADHD)(
Itanietal.
,
2018a
;
Abrahametal.
,
2017
;
Milhametal.
,
2012
),Alzheimer(
Papakostasetal
.,
2015
),autism(
Kos-
mickietal
.,
2015
),schizophrenia,depressionandParkinson(
Wooetal.
,
2017
)arealsotheobjectofextensiveinvestigation.
Asprobablyperceivedbymostofresearchers,andcertainlybytheauthorsofthepresentpaper,diagnosticdecisionsupportsystemsthathavebeenproposedsofararenotunanimouslyapprovedbyclinicians(
Wagholikaretal
.,
2012
).Suchsystems,andtheunderlyingpredictivemodels,arenotablyfoundasbeingfarfromthe?eldreality.Itisthusmostlikelythatdataminersarenotenoughattentivetothespeci?csofmedicaldiagnosticdecisionsupport.Inparticular,thoughtheDMcommunitywassensitizedaboutthedistinctivenatureofmedicalapplications(
CiosandMoore
,
2002
),thepredictiveperformanceremainspracticallythelonelyparameterwithinthescopeofdataminers,whichencouragescompetition.Thistrendhasbeenaccentuatedwiththegreateravailabilityofopenmedicaldatabases,sharedbydi?erentmedicalandresearchcentersworldwide(
DiMartino
etal.
,
2017
;
Wooetal.
,
2017
;
DiMartinoetal.
,
2014
;
Esfandiarietal.
,
2014
;
Mennesetal.
,
2013
;
Ihleetal.
,
2012
;
Kerretal.
,
2012
;
Milhametal.
,
2012
;
Polineetal.
,
2012
).Someofthesedatasetswerelaunchedattheoccasionofo?cialcontests,e.g.theADHD-200collection(
Milhametal.
,
2012
).Infocusingalmostexclusivelyonperformance,theseresearchworks(1)misschallengesofbetterperceivingandunderstandingtheissuespropertothemedical?eld,(2)areexposedtotheriskofyieldinginconsistentmodels,sincenotably,recentstudiesshowedthattheremaybenologicbehindthepredictionsofaccuratemodels(
Ribeiroetal.
,
2016
).
Itisourstrongconvictionthattheclinicianshavetobeinvolvedinthewholedevelopmentprocessoftheirdecisionsupportsystems.Indeed,theybringexpertiseandknowledgetocontributetointelligentandexpertsystems.Thatiswhy,inthepresentpaper,wewillshedlightuponthespeci?csofmedicaldataminingfordiagnosisaidandraisetherelateddatamodelinggoals.Forsuchapurpose,wewilladdressthefollowingquestions.
4
(1)Howcandecisionsupportmodelsbemoreattractivetoclinicians?Whataretheexpressedrequirementsinthisregard?
(2)Whataretheobjectivescorrespondingtosuchrequirementsintermsofmathematicalmod-eling?
(3)Inwhatwaymedicaldata,particularlyinthiseraofopenmedicaldataproliferation,makesdataminingmorechallenging?
(4)Towhatextentarethecurrentdataminingtechniquesabletosatisfytheclinicians’needsandtohandletheparticularnatureofmedicaldatasimultaneously?
Inansweringthesequestions,weareledtodescribeacomprehensiveexpert-awareapproachwhichstandsoutfromtheexistingliterature,throughthreemaincontributionsexposedbelow.
·Becauseofthelimitede?ectivenessofsomemodels,
Karpatneetal
.(
2017
)pushforatheory-
guideddatascience.SuchDMmodelsaregroundedintheoreticalbases,inthedomainsofPhysicsandChemistrymainly.Inthecontextofmedicaldiagnosis,wecanadoptasimilarapproach,notguidedbytheory,butratherbytheexperts’domainknowledge.Ourpaperlaysthebasesforsuchanapproach,inbuildingakindofbridgebetweenboththemedicalanddataminingdomains.
·Wenotonlyexpressthattheissueofdiagnosisaidisofaparticularnature,wealsopropose
thetranslationoftheassociatedspeci?csintomodelinggoals.Indeed,mostofthepapersthathaveinterestonthespeci?csofthemedicaldomainhaveawidescope,andarethusnotspeci?callyfocusedondiagnosis,butalsoonprognosisandmonitoringnotably,whichinvolvesthatmodelingisnotdiscussedwithenoughdepth(
BellazziandZupan
,
2008
;
Cios
andMoore
,
2002
;
Lavraˇc
,
1999
).Besides,webringamorerecentpointofviewcomparedtothepapersthatspeci?callyaddressedaidedmedicaldiagnosis(
Wagholikaretal
.,
2012
;
Kononenko
,
2001
).
·WedonotprovideanoverviewofDMtechniquesandtherelatedworks;thiswaswidelyproposedinprevioussurveys(
Kalantarietal.
2018
;
Kourouetal.
2015
;
Esfandiarietal.
2014
;
Wagholikaretal
.
2012
;
Yooetal.
2012
).WeratherquestiontheexistingDMtechniques,giventhemodelinggoalsraisedfollowingtheunderstandingoftheproblemanddata.Thisallowsustoraisesomesolidfutureresearchdirections.
5
PREDIcTEDAs>
N
P
Negative(N)
TN
FP
Positive(P)
FN
TP
Figure2:Confusionmatrix
Thepaperisorganizedasfollows.Insection
2
,weexposethematerialsweconsideredtostructureandmakeoursurvey.Theresultsarepresentedinsection
3
anddiscussedinsection
4
.Finally,weconcludethisreportinsection
5
.
2.Materials
2.1.Terminology
Medicaldiagnosisistheresultofachallengingtaskwhichconsistsofcollectingandconciliatingdi?erentinformation(
Donner-Banzho?etal.
,
2017
;
HommersomandLucas
,
2016
;
Miller
,
2016
).Thelatterincludethesymptoms(subjectivedata)andthesigns(objectivedata)ofthetroubleprovidedbyclinicalexaminationsandlaboratorytests.Inquestofexplanationsforthesesymptomsandsigns,theclinicianscometotheconclusionoftheexistence/absenceofatrouble,i.e.thediagnosis.
Atestisoneamongotherelementsthatmotivatesadiagnosis(
Gordis
,
2014
;
CiosandMoore
,
2002
).Thepredictionsofaclinicaltestareofseveraltypes.Apatientwith(respectivelywithout)thediseaseDpredictedassuchisdesignatedastruepositive(resp.truenegative).Incaseofwrongpredictions,thepatientsarefalsepositivesorfalsenegativesrespectively.LetTP(resp.TN)denotethenumberofTruePositives(resp.TrueNegatives)andFP(resp.FN)thenumberofFalsePositives(resp.FalseNegatives);thesequantitiesareusuallyexposedinamatrixofconfusion(seeFigure
2
)(
Wittenetal.
,
2005
).Di?erentscalarmetricsarecomputedfromTP,TN,FPandFNtoassesstheperformanceofclinicaltests;theyareexposedinTable
1
(
LalkhenandMcCluskey
,
2008
;
Akobeng
,
2007a
,
b
).Letusnotethatpositiveandnegativepredictivevaluesdependontheprevalenceofthedisease(
Akobeng
,
2007a
):theyareeasilydeducedfromtheknowledgeofsensitivityandspeci?city,whicharefreefromsuchanin?uence.
Whenseveraltestsarerequiredtocheckthepresenceofamedicalcondition,thesetestsmaybeassessedgloballyintermsofnetsensitivityandnetspeci?city.Thevaluesoftheseindicatorsdependonthewayinwhichthetestswereadministered,i.e.sequentiallyorsimultaneously(
Gordis
,
2014
).Figures
3
and
4
presentthemechanismsofsequentialandparalleltesting.Forillustration
6
Test2(tp2,tn2)
Positive
Test2
(tp2,tn2)
Test2
(tp2,tn2)
METRIc
DEFINITIoN
FoRMuLA
Accuracy(A)
Rateofsuccessfulpredictions
A=TP+TN
TP+FP+TN+FN
Sensitivityor
truepositiverate(tp)
>Abilitytodetectpatientswithagivendisease.
>Probabilitythatapatientwithdis-easetestspositive.
tp=
Speci?cityor
truenegativerate(tn)
>Abilitytodetectpatientswithoutagivendisease.
>Probabilitythatapatientwithoutdiseasetestsnegative.
tn=
PositivePredictiveValue(PPV)
Chancethatapatient,predictedashavingagivendisease,istrulyso.
PPV=
NegativePredictiveValue(NPV)
Chancethatapatient,predictedasfreefromagivendisease,istrulyso.
NPV=
Table1:Performancemetricsofscreeningtests
Negative
Test1
(tp1,tn1)
Figure3:Sequentialtesting
Positive
Negative
Test1
(tp1,tn1)
NegativeNegative
Negative
Test1
(tp1,tn1)
PositiveNegative
Positive
Figure4:Paralleltesting
7
purposes,theexamplepresentsthecaseoftwotests;theassociatedreasoningmaybegeneralizedtosituationsinvolvingmoretests.Incaseofsequentialtesting,apatientissubmittedtoanotherroundofexaminationifhe/shetestedpositive,inordertosettlede?nitelyhis/hermedicalcondition.Ifthepatienttestspositivefollowingasecondroundofexamination,thesubjectisdiagnosedwiththediseaseinquestion.Thus,ifoneofbothtestspresentsanegativeresult,thepatientisconsideredasdisease-free.Theassociatednetsensitivityandspeci?cityareexpressedas:
tp=tp1.tp2andtn=tn1+tn2-tn1.tn2.
Incontrast,incaseofparalleltesting,apatientisconsideredasnegativeoncealltestscon?rmthisconditionsimultaneously.Inthiscase,theassociatednetspeci?cityandsensitivityaregivenby:
tn=tn1.tn2andtp=tp1+tp2-tp1.tp2.
Inthesamewaythatacliniciancanaskfortheopinionofanexpertconfrere,he/shecanresorttomodelsfordiagnosisaid.Theonlydi?erencebetweenbothscenariosrestsontheexternalnatureofthediagnosticsupport,eitherhumanorcomputerized.Thedataofoneorseveraltest(s)arepotentialinputsfordiagnosisaidmodels.Itshouldbenotedthatnon-interpretedoutcomesoftesting(e.g.acholesterollevel,ascan)constitutethemodelinputs,andnotthevalueofthetest(s),i.e.positiveornegative.Actually,itistheroleofthepredictivemodeltodetermineapatient’smedicalconditioninoutput.
Inlightoftheforegoing,inthepresentsurvey,whatwerefertoasamodelisdi?erentfromatest,thelatterbeingapotentialinputoftheformer.Amodelprovidesarecommendationofdiagnosis;atestprovidesaresultthatallows,amongotherpotentialinformation,tomakeadiagnosis.
2.2.Theknowledgediscoveryprocess
Theextractionofknowledgeforthepurposeofdiagnosisaid?tsintoaKnowledgeDiscoveryProcess(KDP).Sinceitspioneerformalizationby
Fayyadetal
.(
1996
),alternativemodelswereproposed,eitheracademically-orindustrially-minded(
KurganandMusilek
,
2006
).Inparticular,theKDPwasadaptedformedicalapplicationsandillustratedfortheissueofdiagnosisaidby
Cios
etal.
(
2007
,
2000
).Theassociatedstepsaresummarizedbelow.
UnderstandingoftheproblemTheprocessisinitiatedbytheproblemstatement,thede?ni-tionoftheobjectives,andthesu?cientappropriationofadomain-speci?cvocabulary.Obvi-
8
ously,interactionswithdomainexpertsareessential.Atthislevel,thechoiceofdataminingtechniquesispartiallyforeseengiventheexpressedrequirements.
UnderstandingofthedataThisstepconsistsofcollectingandexploringdata,i.e.observingandanalyzingtheinformation.
PreparationofthedataThecreationoftargetdatasets(
Fayyadetal
.,
1996
)involvesnotablynoiseremovalaswellascheckingthecompletenessandconsistencyofdata.Then,dataareprocessedthroughengineering,selectionandpossiblereductionofpertinentfeatures.
DataminingThisprocessreceivestheprepareddatasets,andextractsknowledge,i.e.patterns,relationships(
BellazziandZupan
,
2008
).
EvaluationofthediscoveredknowledgeTheresultsarecloselyconsidered:theyareexpectedtobringnewandinterestingelements,tobeunderstoodandtomakesense.Here,domainexpertshavetoplayanimportantroleintheirabilitytointerpretandassesstheresults.
UseofthediscoveredknowledgeItcanleadtoactiontaking,decisionmakingorsystemsde-ployment(
Fayyadetal
.,
1996
).
TheKDPisnotstrictlyaone-wayprocessasitisnotexcludedtoreconsidertheworkofpreviousstages:thisallowstoreinforcetheconsistencyoftheresults(
Ciosetal.
,
2007
).Forexample,the?nalevaluationmayaskforre?ningtheresults.Ortobetterunderstandthedata,are-understandingoftheproblemmaystrengthenthedomain-speci?cknowledge.
2.3.Acceptancecriteria
Onedi?cultyrelatedtomedicalDMisthatitmaytargetdi?erentpublicswiththeresultingnecessitytoaddressdi?erentexpectations.
Actually,aDMapproachmayberequestedinthemedical?eldbyresearchersandspecialistsinordertostudyagivenpathologythroughtheidenti?cationofexplanatoryfactors.Inthatcase,theextractedknowledgeisvalidatedifitcarriesacertainlevelofcredibility,measuredbymeansofcriteriarelatedtostatisticalpowernotably.Ifendorsedbythescienti?ccommunity,suchresultsmaybetakenintoconsideration(directlyorindirectly)bycliniciansfacedwithadiagnosistask.
Assuggestedinsection
2.2
,theextractedknowledgemayalsobedeployedintheformofacomputerizeddiagnosisaid.Despitetheyarethelonelyusersofsuchtechnologies,thecliniciansarein?uencedintheirexpectations,e.g.bythepatientswhoplacealotofhopeinafairdiagnosis.
9
Di?erentmodelsweredevelopedinane?orttoexplainhowaclinicianmayacceptatechnologyandintegrateittohis/herworkingpractices(
Andargolietal
.,
2017
;
Ketikidisetal.
,
2012
;
Holden
andKarsh
,
2010
;
YarbroughandSmith
,
2007
).ThemostpopularistheTechnologyAcceptanceModel(TAM),introducedby
Davisetal.
(
1989
)andrevisedby
VenkateshandDavis
(
2000
)(TAM2).Enjoyedforitsconcisestructure,themodeldepictsthepsychologicalprocesswhich,in?uencedbymaterialandsocialfactors,leadstotheintentionofusingacomputerizedapplicationindi?erent
contexts(
YarbroughandSmith
,
2007
).
VenkateshandDavis
(
2000
)reportthattheacceptanceoftechnologyisacquiredinpracticeonceitsusefulnessandeaseofusearebothperceivedbytheuser.Moreover,theeaseofuseisoneofthefactorsin?uencingtheuser’sperceptionoftheusefulnessoftheapplication.Theperceptionofusefulnessrestsalsoonsocialfactors:thesubjectivenorm,i.e.theuser’s(professionalorprivate)surroundings’opinionregardinghis/herdecisiontoadopt(ornot)theapplication,andtheimage,i.e.thesocialstatustheapplicationprovidestotheuser(
Munetal.
,
2006
;
Chismarand
Wiley-Patton
,
2002
).
Thesubjectivenormimpactsdirectlytheintentionofuse.Thisin?uenceisexertedontheclini-cianbyhis/herpatientsbutalsobytheprofessionalenvironment.Indeed,thephysicianissensitivetotheopinionofconfreres,particularlyofreferencepeopleinthedomain,eventhoughthisopinionmaybecontrarytothephysician’sbeliefs(
Munetal.
,
2006
).Asforthein?uenceofthepatients,thestudyof
Sha?eretal.
(
2013
)showstheyoftentendtodemonizecomputerizeddiagnosticsupport.Conversely,noncomputer-assistedpracticesareperceivedasapledgeofprofessionalism;maytheclinicianresorttotheopinionofanexpertconfrereisevenperceivedasanintelligentact.Yetinbothlastcases,thecliniciansmightbasetheirdecisiononelementsprovidedintheliteratureandextractedfromaDMapproach.Thus,theinvolvementofcomputinginthediagnosticprocess,ifonlytohaveanadvice,wouldinitselfleadthephysician’simagetotakeahittowardscolleaguesand/orpatients(
Munetal.
,
2006
).
Inthepresentsurvey,wewillhighlightthespeci?csofDMtodevelopdiagnosticdecisionsupportmodelswhichmeettherequirementsoftheclinicians.Wewilldealwithhowtomakecomputerizeddiagnosisaidful?llcriteriaofoutputqualityandresultsdemonstrabilityadvocatedbyTAM.Nev-ertheless,itmustberecognizedthatadoptingasuitableapproachofmodelingdoesnotguarantee
exclusivelytheacceptanceofthemodelssincesomerelatedfactors(e.g.subjectivenorm)donotfallwithinDMconcerns.
10
cKnowledgeDiscoveryProcessc
NatureofMedicalData
OverviewofDMTechniques
PerformanceEvaluation
Speci?csofMedicalDM
√
√
√
√
√√
√√
√
√
√
√
√
√
√
√
√√
Selectedtechniquesfordatamininginmedicine
Machinelearningformedicaldiagnosis:history,stateoftheartandperspective
Theuniquenessofmedicaldatamining
Predictivedatamininginclinicalmedicine:currentissuesandguidelines
Introductiontotheminingofclinicaldata
Clinicaldatamining:a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年高考化學考點08 電化學及其應(yīng)用 (二)
- 2020年教師招聘考試面試十問及真題
- 2024年漳乎市中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年渭源縣第一人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年07月浙江杭州銀行總行部室招考(715)筆試歷年參考題庫附帶答案詳解
- 2024年07月浙江寧波銀行金華分行社會招考71筆試歷年參考題庫附帶答案詳解
- 三位數(shù)的連續(xù)退位減法(說課稿)-2023-2024學年數(shù)學二年級下冊冀教版001
- 器質(zhì)性精神障礙護理查房
- 2024年泉州市成功醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 活動一《家人檔案冊》(說課稿)-2023-2024學年三年級下冊綜合實踐活動滬科黔科版
- 云南面向東南亞、南亞區(qū)域物流系統(tǒng)優(yōu)化研究的開題報告
- 高效課堂教學流程和課堂常規(guī)公開課一等獎市賽課獲獎?wù)n件
- 《新媒體營銷與策劃》考試復(fù)習題庫(含答案)
- 浙江寧波廣播電視集團發(fā)射中心招考聘用筆試參考題庫答案解析
- 2024年航天知識總結(jié)
- 公立醫(yī)院章程范本(中國醫(yī)院協(xié)會2019版)
- 江蘇小高考(物理化學生物)真題及答案
- 垃圾開挖清運方案
- 如何分析睡眠監(jiān)測呼吸信號及監(jiān)測結(jié)果解讀
- 2023年普通高等學校招生“圓夢杯”統(tǒng)一模擬考試數(shù)學試題+含答案
- GB/T 8753.2-2005鋁及鋁合金陽極氧化氧化膜封孔質(zhì)量的評定方法第2部分:硝酸預(yù)浸的磷鉻酸法
評論
0/150
提交評論