信號與系統(tǒng)復(fù)習(xí)版_第1頁
信號與系統(tǒng)復(fù)習(xí)版_第2頁
信號與系統(tǒng)復(fù)習(xí)版_第3頁
信號與系統(tǒng)復(fù)習(xí)版_第4頁
信號與系統(tǒng)復(fù)習(xí)版_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

§2.7

卷積的性質(zhì)*.移不變if

f1

*

f2

=

f3則:f1

(t

-t0

)*

f2

=f3

(t

-t0

)f2

(t

-

t0

)

*

f1

=

f3

(t

-

t0

)性質(zhì)的應(yīng)用參考P84面2-14題p84.2-14f

(t)011tf

(t)011t*=011t2s(t)1.t<0011ts(t)

=

0t

-12.0<t<10t1t

-1ts

(

t

)

=

1

d

t

=

t03.1<t<2tt

-1

11s(t)

=

1dt

=

2

-

tt

-14.t>2t

-1t1s(t)

=

0若f

(t)=u(t

-1)-u(t

-2),求f

(t)*

f

(t)=s(t)f

(t)1

21f

(t)1

21*=123

4s(t)若f1

(t)*

f

2(t)=s(t)則f1

(t

-t1

)*

f

2

(t

-t2

)=s(t

-t1

-t2

)4

-t

3

<

t

<

4s(t)

=

t

-

2 2

<

t

<

30

t

2

t

?

4差別:第二小題就是把第一小題的卷積結(jié)果向右平移兩個單位。利用位移特性及u(t)*

u(t)=

r(t)

,計(jì)算y(t)=f(t)

*

h(t)。解:y(t)=f(t)*

h(t)=(u(t)-u(t-1))*(u(t)-u(t-2))=u(t)

*

u(t)

-

u(t-1)

*

u(t)

-

u(t)

*

u(t-2)

-

u(t-1)

*

u(t-2)=

r(t)

-

r(t-1)

r(t

-2)

+

r(t-3)f

(t)t101h(t)201y(t)t011

23t3

-

t*=t一.卷積代數(shù)2.distributi

ve

lawf1

*[

f2

+

f3

]

=

f1

*

f2

+

f1

*

f3f1f2(t)f3(t)f1

*

f

2

+

f1

*

f31.commutative

lawf1

*

f2

=

f2

*

f1h(t)f

*

hh(t

)h

*

ff(t)f

(t)f2(t)f3(t)f3(t)f2(t)3.associativ

e

law

[

f1

*

f2

]*

f3

=

f1

*[

f2

*

f3

]f1f1f1

*[

f

2

*

f

3

]f1

*[

f

3

*

f

2

]dt

dt

dt21

2

2

1*

f

=

f

*]

=

df

1

dfd

[

f

*

f2.兩函數(shù)相卷積后的積分等于兩函數(shù)之一的積分與另一函數(shù)相卷積.f

2

(

t

)

d

tt-

¥t

[

f

1

*

f

2

]

dt

=

f

1

*-

¥dtdtdft12d

2

f-¥t

t*

f

2

(t)dt-¥

-¥= 1

*

f

(t)dt

=2f1

*

f

23.推廣二.卷積的微分和積分1.兩函數(shù)相卷積后的導(dǎo)數(shù)等于兩函數(shù)之一的導(dǎo)數(shù)與另一函數(shù)相卷積.則

:

f

(m

)

(

t

)

*

f

(n

)

(

t

)

=

s

(m

+

n

)

(

t

)1

2三.奇異信號的卷積特性1

.

f

(

t

)

*

d

(

t

)

=

f

(

t

)f

(

t

)

*

d

(

t

-

t

0

)

=f

(

t

-

t

0

)f

(

t

-

t

0

-

t

1

)f

(

t

-

t

1

)

*

d

(

t

-

t

0

)

=.若:

f1

*

f

2

=

s(t)(d(t)及其各階導(dǎo)數(shù)卷積)*

d

(

t

)2 .

d

(

t

)3

.

f

(

t

)=

d

(

t

)=

f

'

(

t

)t(

t

)

*

u

(

t

)

=5.推廣:(

k

)(

k

)f

(

t

)

*

df

(

k

)

(

t

-

t

)0(

t

)

=

f

(

t

))

=f

(

t

)

*

d

(

k

)

(

t

-

t0f

(t

)

fi

相當(dāng)于微分運(yùn)算f

(

t

)

d

tpf

(

t

)

=4

.

f*

d

'

(

t

)d

'

(

t

)

*1pf

(

t

)

=

u

(

t

)

*

f

(

t

)-

¥相當(dāng)于積分運(yùn)算f

(t

)

=f

(t

)

*

d

'

(t

)

*

u

(t

)

=f

'

(t

)

*

u

(t

)''

(t

)

*

tu

(t

)f

(t

)

=

f

(t

)

*

d

''

(t

)

*

tu

(t

)

=

f四.例題:1.P85.2-19(a)1f1(t)123tf2(t)-22t解:f1

*

f

2

=

f1

(t)[d(t

-t

+

2)

+

d(t

-t

-

2)]dt¥-¥=

f1

(t

+

2)

+

f1

(t

-

2)13

4

5-5-3

-1f1*f22用P67-68圖2-17示例解如下例題:2af1(t)*t1f2(t)bt2'1*

f

=f2[

Ad

(t

)

-

Ad

(t

-

1)]

*

f1f

'

(t)123*2.計(jì)算f1

*

f

2解:f1(t)

=

Ad(t)

-

Ad(t

-1)=

Ad

(t

)

*

f

2

-

Ad

(t

-

1)

*

f

2=

Af

2

(t

)

-

Af

2

(t

-

1)'f1

(t

)

*

f

2

(t

)

=tab0

t

122ab1

<

t

<

22ab

(1

-

t

)2

<

t

<

321f

*

f

=tdtabt02ab

abt

11

0

2

dt

+

2

tdt12

0

2

(1

-

t

)dt

+

2

tdt

+

2

dtab

ab

2

abt

1123'f1

*

f22abab=24tab2

4ab

abt

-1

t

<

24ab

(3

-

t

2

+

2t)2

t

33.計(jì)算下列函數(shù)的卷積結(jié)果,并化出波形....2

3

5*tf1p85.2

-19(

f

)0

t

11

2f1

*

f

23tf2

=

sin

ptu(t)43abab4¥n

=

0=

[

u

(

t

-

3

n

)

-

u

(

t

-

3

n

-

2

)]解:

f

1f

2

=

sin

ptu(t

)¥1n

=

0f

'

(

t

)

=

[d

(

t

-

3

n

)

-

d

(

t

-

3

n

-

2

)]1(

1

-

cos

p

t

)

u

(

t

)pf

2

(

t

)

d

t

=t0f

(

t

)

d

t2'1t-

¥(

t

)

*r

(

t

)

=

f23'f1

(t)5

*1

24¥¥=1n=0n=0t)[u(t)

-

u(t

-

2)]

*=

1

(1-

cos

t)u(t)r(t)d(t

-

3n)(1-

cosppp

*[d(t

-

3n)

-d(t

-

3n

-

2)]p4.P85.2-19(b)2-¥f1

*

f

=-(t+1)解:方法一:t<0時:t+11·e

dt=e

-e

=e0

-0

=1-(t-t+1)-¥t

+11t>0時:-¥1e-(t

-t+1)

dt

+f1

*

f2

=2e-(t

-t+1)

dt

=

2

-

e-tf111*-(t

+1)f

2

=

e u(t

+1)-1方法二:用微分積分性質(zhì)f1

(t

)tt-¥

-¥

1

dt

=

d

(t

-1)dt

=

u(t

-1)

?dtdf

(t)dfdtdftt-¥f1

=

1

dtf1

*

f2

=

1

*

f2

(t)dt需要t

fi

-¥條件為:lim

f1

(t)=0-(t

+1)s

=

f1

*

f

2

=

[1

+

u(t

-1)]

*[e

u(t

+1)]注意積分常數(shù)的問題。=

e

u(t

+1)-¥

dtf1

=

1

+

u(t

-1)f

2-(t

+1)dt-¥

-¥du

(t

-

1)=

1*

e

-(

t

+1)

u

(t

+

1)

+

u

(t

-1)

*

e

-(

t

+1)

u

(t

+

1)t*

e

-(t

+1)

u

(t

+

1)dt¥=

e

-(t

+1)

u

(t

+

1)dt

+¥

t=

e

-(t

+1)

dt

+

d

(t

-1)

*

e

-(t

+1)

dtu

(t

+

1)-1

-1t

-1=

1

+

e

-(t

+1)

dt

=

1

+

(1

-

e

-t

)u

(t

)-1注意

:

1

*

e

-(

t

+1)

u

(t

+

1)

?

e

-(

t

+1)

u

(t

+

1)5.圖示a線性時不變系統(tǒng)是由三個子系統(tǒng)組成,已知總系統(tǒng)的h(t)和h1(t),h2

(t)分別為b,c,d所示,求子系統(tǒng)的沖激響應(yīng)h3

(t).h1(t)h3

(t)h2

(t)d(t)h(t)(a)24

5h(t)0

1(b)1h1

(t)40(c)h2

(t)120

1(d)解:由圖(a)可知,系統(tǒng)的總響應(yīng)為h(t)

=

h1

(t)

*[h2

(t)

+

h3

(t)]因h(t)為一梯形波,而h1

(t)為一炬形波\h2(t)+h3

(t)也應(yīng)為矩形波21h2

(t)

+

h3(t)

=

2[u(t)

-

u(t

-1)]h3

(t)

=

2[u(t)

-

u(t

-1)]

-

h2

(t)=

2[u(t)

-

u(t

-1)]

-{t[u(t)

-

u(t

-1)]

+

(t

-1)[u(t

-1)

-

u(t

-

2)]}=

(2

-

t)[u(t)

-

u(t

-1)]

-

(t

-1)[u(t

-1)

-

u(t

-

2)]3h

(t)1122此題的關(guān)鍵是利用了兩個不同寬度的矩形波的卷積結(jié)果是梯形波。6.線性系統(tǒng)如圖所示,它由幾個子系統(tǒng)組成,已知部分子系統(tǒng)的沖激響應(yīng)為h1

(t

)

=

d

(t

-

1),

h2

(t

)

=

-2d

(t

-

1)h2(t)h1(t)h1(t)h3(t)rzs(t)

12t若整個系統(tǒng)對sintu(t)的零狀態(tài)響應(yīng)如(b)所示,求子系統(tǒng)的沖激響應(yīng)h3(t)。rzs(t)1圖b0h(t)

=

d

(t)

+

h1

(t)

*h1

(t)

+

h2

(t)

+

h3

(t)=

d(t)

+

d(t

-1)

*d(t

-1)

-

2d(t

-1)

+

h3

(t)=

d

(t)

-

2d

(t

-1)

+

d

(t

-

2)

+

h3

(t)求h3

(t)?r(t)

=

sin

tu(t)

*h(t)2dt

2d

2

r(t)dt

2dtdtd

2

sin

tu(t)fisin

tu(t)

fi

r(t)d

2

sin

tu(t)

d

sin

tu(t)

=

cos

tu(t)

+

d(t)

sin(

t)r(t)r

''

(t)=

d(t)

-

sin(

t)u(t)r‘

(t)012()

(

)(2

)(1)1

+

2d

2

r*

h

(

t

)d

2

r d

2

sin

tu

(

t

)d

2

t

=

d

2

tr

(

t

)

=

sin(

t

)u

(

t

)

*

h

(

t

)\

h

(

t

)

=

d

(

t

)

+

r

(

t

)

-

2d

(

t

-

1)

+

d

(

t

-

2

)d

(

t

)

*

h

(

t

)

=

h

(

t

)

=

r

(

t

)

+d

2

t=

[d

(

t

)

-

sin

tu

(

t

)]

*

h

(

t

)\

h3

(t)

=

r(t)點(diǎn)評:本題是求反卷積的問題。利用了sintu(t)兩次求導(dǎo)后出現(xiàn)沖激函數(shù)

和自身,具有這一特點(diǎn)的函數(shù),求反卷積用本例的方法比較簡單。例8.某LTI系統(tǒng),當(dāng)輸入f(t)

=e-tu(t)時,其零狀態(tài)響應(yīng)為-(t

+T

)

-(t

-T

)yzs

(t)

=[1

-

e

]u(t

+

T

)

-[1

-

e

]u(t

-T

)式中,T為常數(shù)。試求該系統(tǒng)的沖激響應(yīng)h(t)。解:由于yzs

(t)=f

(t)*h(t),利用卷積的性質(zhì),有y‘zs

(t)=f

’(t)*h(t)f

'(t

)=d(t

)-e-tu

(t

)帶入上式,有y'zs(t)

=[d(t)

-

e-tu(t)]

*h(t)

=

h(t)

-[e-tu(t)]

*h(t)而[e-tu(t)]

*h(t)

=

y

(t),故zszs'zs(t)

=

u(t

+

T

)

-

u(t

-T

)h(t)

=

y

(t)

+

y對yzs

(t)求導(dǎo)時,要利用f(t)d(t-t0

)=f

(t0

)d(t

-t0

)的性質(zhì),f

(t)tth(-t)f

(t)h(t

-

t)較麻煩,利用移不變特性。計(jì)算f

(t)*

h(t),f

(t)=u(t),h(t)=e-tu(t)f

(t)h(t)h(t)0t

?

0f

(t)

*

h(t)

=t-tte

dt

=

1

-

e-(t

-t)1

2

1

22.

f

*

f

的寬度為f

f

的寬度之和1

2

1

27.若

f

(t)和

f

(t)為有限寬度的脈沖,

證明1

21.

f

*

f

的面積為f

f

的面積之積ff

f2[[121dt]dt(t)f

(t

-t)

¥-¥

-¥-¥*

]dt

=證明:1;¥ff¥-¥¥¥-¥

-¥]dt

=12[

f

1

*

f(t

-t)dtdt2(t)令t

-t

=x,dt

=dx對上式交換積分次序得fffff

f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論