版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
共面向量定理復習問題引入練習1、212練習2:已知A、B、P三點共線,O為直線AB外一點,且,求的值.
3分析:
證三點共線可嘗試用向量來分析.練習2:已知A、B、P三點共線,O為直線AB外一點,且,求的值.
4思考1二.共面向量:1.共面向量:平行于同一平面的向量,叫做共面向量.OA注意:空間任意兩個向量是共面的,但空間任意三個向量就不一定共面的了。567得證.81.對于空間任意一點O,下列命題正確的是:(A)若,則P、A、B共線(B)若,則P是AB的中點(C)若,則P、A、B不共線(D)若,則P、A、B共線2.已知點M在平面ABC內(nèi),并且對空間任意一點O,,則x的值為()91.下列說明正確的是:(A)在平面內(nèi)共線的向量在空間不一定共線(B)在空間共線的向量在平面內(nèi)不一定共線(C)在平面內(nèi)共線的向量在空間一定不共線(D)在空間共線的向量在平面內(nèi)一定共線2.下列說法正確的是:(A)平面內(nèi)的任意兩個向量都共線(B)空間的任意三個向量都不共面(C)空間的任意兩個向量都共面(D)空間的任意三個向量都共面10例2(課本例)如圖,已知平行四邊形ABCD,從平面AC外一點O引向量,
,
,,求證:⑴四點E、F、G、H共面;⑵平面EG//平面AC.
11例2(課本例)已知ABCD,從平面AC外一點O引向量求證:①四點E、F、G、H共面;②平面AC//平面EG.證明:∵四邊形ABCD為①∴(﹡)(﹡)代入所以E、F、G、H共面。12例2已知ABCD,從平面AC外一點O引向量求證:①四點E、F、G、H共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術延時特色課程設計
- 那些課程設計大數(shù)據(jù)
- 2024年耐磨碳化鎢管裝純合金粉電焊條項目可行性研究報告
- 2024年斜紗綢項目可行性研究報告
- 調(diào)查校本課程設計與評價
- 中國防噴器行業(yè)現(xiàn)狀動態(tài)及未來趨勢預測研究報告(2024-2030版)
- 中國金屬硅行業(yè)經(jīng)營態(tài)勢與供需趨勢預測研究報告(2024-2030版)
- 中國轉矩測量儀表行業(yè)應用態(tài)勢與投資規(guī)劃分析研究報告(2024-2030版)
- 中國胎面再生橡膠行業(yè)消費狀況及競爭格局分析研究報告(2024-2030版)
- 中國聚丙烯膜行業(yè)發(fā)展動態(tài)及需求規(guī)模預測研究報告(2024-2030版)
- 安全使用家電和煤氣課件
- 《GPS測量與數(shù)據(jù)處理》-第3講 全球定位系統(tǒng)組成及信號結構
- 前置胎盤詳解課件
- 達爾文的“進化論”課件
- 國開電大《建筑測量》實驗報告1
- 《火災自動報警系統(tǒng)設計規(guī)范》
- 南京市小學一年級語文上學期期中試卷
- 合肥工業(yè)大學-孫冠東-答辯通用PPT模板
- 國開作業(yè)《管理學基礎》管理實訓:第一章訪問一個工商企業(yè)或一位管理者參考(含答案)280
- 膀胱過度活動癥的診斷與治療
- 幼兒園繪本故事:《神奇雨傘店》 課件
評論
0/150
提交評論