




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022屆湖南省長沙市明德麓谷校中考數(shù)學(xué)模擬預(yù)測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>22.如圖,若AB∥CD,則α、β、γ之間的關(guān)系為()A.α+β+γ=360° B.α﹣β+γ=180°C.α+β﹣γ=180° D.α+β+γ=180°3.下列運算正確的是()A.=x5 B. C.·= D.3+24.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學(xué)記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1085.的值是A. B. C. D.6.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.7.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數(shù)相加得到一個數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.68.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.109.已知關(guān)于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣310.施工隊要鋪設(shè)1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務(wù).設(shè)原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.12.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.13.如圖,在平面直角坐標系中有一正方形AOBC,反比例函數(shù)經(jīng)過正方形AOBC對角線的交點,半徑為()的圓內(nèi)切于△ABC,則k的值為________.14.如圖,在邊長為1的正方形格點圖中,B、D、E為格點,則∠BAC的正切值為_____.15.|-3|=_________;16.在一個不透明的布袋中裝有4個白球和n個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球,摸到白球的概率是,則n=_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.18.(8分)如圖,已知矩形ABCD中,連接AC,請利用尺規(guī)作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)19.(8分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.20.(8分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關(guān)系;.21.(8分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).22.(10分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.23.(12分)填空并解答:某單位開設(shè)了一個窗口辦理業(yè)務(wù),并按顧客“先到達,先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務(wù)開始時刻024681012141618…每人服務(wù)時長2222222222…服務(wù)結(jié)束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務(wù)結(jié)束的時刻為.24.一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關(guān)鍵.2、C【解析】
過點E作EF∥AB,如圖,易得CD∥EF,然后根據(jù)平行線的性質(zhì)可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,進一步即得結(jié)論.【詳解】解:過點E作EF∥AB,如圖,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故選:C.【點睛】本題考查了平行公理的推論和平行線的性質(zhì),屬于??碱}型,作EF∥AB、熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.3、B【解析】
根據(jù)冪的運算法則及整式的加減運算即可判斷.【詳解】A.=x6,故錯誤;B.,正確;C.·=,故錯誤;D.3+2不能合并,故錯誤,故選B.【點睛】此題主要考查整式的加減及冪的運算,解題的關(guān)鍵是熟知其運算法則.4、B【解析】
根據(jù)科學(xué)記數(shù)法進行解答.【詳解】1315萬即13510000,用科學(xué)記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學(xué)記數(shù)法,科學(xué)記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).5、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、C【解析】
先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).7、C【解析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.8、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.9、B【解析】
把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.10、A【解析】分析:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設(shè)原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關(guān)鍵是讀懂題意,找出合適的等量關(guān)系,列出方程.二、填空題(本大題共6個小題,每小題3分,共18分)11、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.12、1-1.【解析】
將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出∠ECG=60°,結(jié)合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉(zhuǎn)120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設(shè)EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉(zhuǎn)的性質(zhì),通過勾股定理找出方程是解題的關(guān)鍵.13、1【解析】試題解析:設(shè)正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設(shè)圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數(shù)y=經(jīng)過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內(nèi)切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質(zhì)以及三角形內(nèi)切圓的性質(zhì)以及待定系數(shù)法求反比例函數(shù)解析式,根據(jù)已知求出CD的長度,進而得出DN×NO=1是解決問題的關(guān)鍵.14、【解析】
根據(jù)圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網(wǎng)格格點上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點睛】本題考查的知識點是圓周角定理及其推論及解直角三角形,解題的關(guān)鍵是熟練的掌握圓周角定理及其推論及解直角三角形.15、1【解析】分析:根據(jù)負數(shù)的絕對值等于這個數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.16、1【解析】
根據(jù)白球的概率公式=列出方程求解即可.【詳解】不透明的布袋中的球除顏色不同外,其余均相同,共有n+4個球,其中白球4個,根據(jù)古典型概率公式知:P(白球)==.解得:n=1,故答案為1.【點睛】此題主要考查了概率公式的應(yīng)用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共8題,共72分)17、(1)詳見解析;(2)1+【解析】
(1)連接OD,結(jié)合切線的性質(zhì)和直徑所對的圓周角性質(zhì),利用等量代換求解(2)根據(jù)勾股定理先求OC,再求AC.【詳解】(1)證明:連結(jié).如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學(xué)生對圓的認識,熟練掌握圓的性質(zhì)是解題的關(guān)鍵.18、詳見解析【解析】
利用尺規(guī)過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【點睛】本題主要考查了尺規(guī)作圖,相似三角形的判定,解決問題的關(guān)鍵是掌握相似三角形的判定方法.19、(1);(2)不能成為平行四邊形,理由見解析【解析】
(1)將點B坐標代入一次函數(shù)上可得出點B的坐標,由點B的坐標,利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結(jié)合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;
(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結(jié)合PD∥x軸可得出點D的坐標,由折疊的性質(zhì)可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設(shè),則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標特征、三角形的面積、折疊的性質(zhì)以及平行四邊形的判定,解題的關(guān)鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.20、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】
(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結(jié)論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點睛】本題考查了四邊形綜合題、相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.21、20°【解析】
依據(jù)三角形內(nèi)角和定理可得∠FGH=55°,再根據(jù)GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根據(jù)∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【詳解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【點睛】本題考查了平行線的性質(zhì),兩直線平行時,應(yīng)該想到它們的性質(zhì),由兩直線平行的關(guān)系得到角之間的數(shù)量關(guān)系,從而達到解決問題的目的.22、(1)詳見解析;(2)4.【解析】試題分析:(1)連結(jié)OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結(jié)OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質(zhì).23、(1)5;(2)5n﹣4,na+6a.【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省盤錦市雙臺子區(qū)實驗中學(xué)2025年初三適應(yīng)性監(jiān)測考試生物試題含解析
- 湖北藝術(shù)職業(yè)學(xué)院《水利專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西經(jīng)濟管理職業(yè)學(xué)院《數(shù)字電路課程設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025員工住房抵押借款合同
- 天津電子信息職業(yè)技術(shù)學(xué)院《外國文學(xué)史Ⅰ(2)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年山東省環(huán)保發(fā)展集團生態(tài)有限公司權(quán)屬公司招聘(社招校招)筆試參考題庫附帶答案詳解
- 2024年四川新火炬化工有限責(zé)任公司社會公開招聘筆試參考題庫附帶答案詳解
- 護理職業(yè)探索報告
- 消毒隔離基本知識培訓(xùn)
- 2024山西杏花村汾酒集團有限責(zé)任公司生產(chǎn)一線技術(shù)工人招聘245人筆試參考題庫附帶答案詳解
- 2023年拉薩市“一考三評”備考試題庫-下(多選、判斷題部分)
- 資產(chǎn)評估收費管理辦法(2009)2914
- 2024-2029全球及中國柚子果實提取物行業(yè)市場發(fā)展分析及前景趨勢與投資發(fā)展研究報告
- 河南省鶴壁市校聯(lián)考2023-2024學(xué)年八年級下學(xué)期期中語文試題
- 公共部位裝修合同
- 2024年廣東省惠州市惠城區(qū)中考二模物理試卷
- 2024年山東省青島市部分學(xué)校九年級中考二模數(shù)學(xué)試題(含答案)
- 中考語文專題復(fù)習(xí)十議論性文本閱讀市賽課公開課一等獎省名師獲獎?wù)n件
- 醫(yī)院化糞池清掏合同
- 醫(yī)院手衛(wèi)生知識考試題庫100題(含答案)
- 重慶開放大學(xué)《工具書與文獻檢索》形考測驗1-4答案
評論
0/150
提交評論