免費(fèi)高中數(shù)理化公式大全+總復(fù)習(xí)匯總_第1頁
免費(fèi)高中數(shù)理化公式大全+總復(fù)習(xí)匯總_第2頁
免費(fèi)高中數(shù)理化公式大全+總復(fù)習(xí)匯總_第3頁
免費(fèi)高中數(shù)理化公式大全+總復(fù)習(xí)匯總_第4頁
免費(fèi)高中數(shù)理化公式大全+總復(fù)習(xí)匯總_第5頁
已閱讀5頁,還剩222頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)理化公式大全+總復(fù)習(xí)目 錄數(shù)學(xué)公式:P1-20頁物理公式:P21-27頁化學(xué)公式:P28-35頁生物公式:P36-40頁數(shù)學(xué)總復(fù)習(xí):P41-54頁物理總復(fù)習(xí):P61-98頁化學(xué)總復(fù)習(xí):P99-132頁生物總復(fù)習(xí):133-224頁高中的數(shù)學(xué)公式定理大全三角函數(shù)公式表 同角三角函數(shù)的基本關(guān)系式 倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系: tan cot1 sin csc1 cos sec1 sin/costansec/csc cos/sincotcsc/sec sin2cos21 1tan2sec2 1cot2csc2 (六邊形記憶法:圖形結(jié)構(gòu)“上弦中切下割,左正右余中間1”;記憶方法“對(duì)角線上兩個(gè)

2、函數(shù)的積為1;陰影三角形上兩頂點(diǎn)的三角函數(shù)值的平方和等于下頂點(diǎn)的三角函數(shù)值的平方;任意一頂點(diǎn)的三角函數(shù)值等于相鄰兩個(gè)頂點(diǎn)的三角函數(shù)值的乘積?!保?誘導(dǎo)公式(口訣:奇變偶不變,符號(hào)看象限。) sin()sin cos()cos tan()tan cot()cot sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin()sin cos()cos tan()tan cot()cot sin()sin cos()cos tan()tan cot()cot sin(3/2)c

3、os cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(2)sin cos(2)cos tan(2)tan cot(2)cot sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot (其中kZ) 兩角和與差的三角函數(shù)公式 萬能公式 sin()sincoscossin sin()sincoscossin cos()coscossinsin cos()coscossinsin tantan tan() 1tan tan tantan tan

4、() 1tan tan 2tan(/2) sin 1tan2(/2) 1tan2(/2) cos 1tan2(/2) 2tan(/2) tan 1tan2(/2) 半角的正弦、余弦和正切公式 三角函數(shù)的降冪公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin22sincos cos2cos2sin22cos2112sin2 2tan tan2 1tan2 sin33sin4sin3 cos34cos33cos 3tantan3 tan3 13tan2 三角函數(shù)的和差化積公式 三角函數(shù)的積化和差公式 sinsin2sincos 2 2 sinsin2cossin 2 2 co

5、scos2coscos 2 2 coscos2sinsin 2 2 1 sin cos-sin()sin() 2 1 cos sin-sin()sin() 2 1 cos cos-cos()cos() 2 1 sin sin -cos()cos() 2 化asin bcos為一個(gè)角的一個(gè)三角函數(shù)的形式(輔助角的三角函數(shù)的公式集合、函數(shù) 集合 簡(jiǎn)單邏輯 任一xA xB,記作A B A B,B A AB A Bx|xA,且xB A Bx|xA,或xB card(A B)card(A)+card(B)card(A B) (1)命題 原命題 若p則q 逆命題 若q則p 否命題 若 p則 q 逆否命題

6、若 q,則 p (2)四種命題的關(guān)系 (3)A B,A是B成立的充分條件 B A,A是B成立的必要條件 A B,A是B成立的充要條件 函數(shù)的性質(zhì) 指數(shù)和對(duì)數(shù) (1)定義域、值域、對(duì)應(yīng)法則 (2)單調(diào)性 對(duì)于任意x1,x2D 若x1x2 f(x1)f(x2),稱f(x)在D上是增函數(shù) 若x1x2 f(x1)f(x2),稱f(x)在D上是減函數(shù) (3)奇偶性 對(duì)于函數(shù)f(x)的定義域內(nèi)的任一x,若f(x)f(x),稱f(x)是偶函數(shù) 若f(x)f(x),稱f(x)是奇函數(shù) (4)周期性 對(duì)于函數(shù)f(x)的定義域內(nèi)的任一x,若存在常數(shù)T,使得f(x+T)f(x),則稱f(x)是周期函數(shù) (1)分?jǐn)?shù)指

7、數(shù)冪 正分?jǐn)?shù)指數(shù)冪的意義是 負(fù)分?jǐn)?shù)指數(shù)冪的意義是 (2)對(duì)數(shù)的性質(zhì)和運(yùn)算法則 loga(MN)logaM+logaN logaMnnlogaM(nR) 指數(shù)函數(shù) 對(duì)數(shù)函數(shù) (1)yax(a0,a1)叫指數(shù)函數(shù) (2)xR,y0 圖象經(jīng)過(0,1) a1時(shí),x0,y1;x0,0y1 0a1時(shí),x0,0y1;x0,y1 a 1時(shí),yax是增函數(shù) 0a1時(shí),yax是減函數(shù) (1)ylogax(a0,a1)叫對(duì)數(shù)函數(shù) (2)x0,yR 圖象經(jīng)過(1,0) a1時(shí),x1,y0;0 x1,y0 0a1時(shí),x1,y0;0 x1,y0 a1時(shí),ylogax是增函數(shù) 0a1時(shí),ylogax是減函數(shù) 指數(shù)方程和對(duì)

8、數(shù)方程 基本型 logaf(x)b f(x)ab(a0,a1) 同底型 logaf(x)logag(x) f(x)g(x)0(a0,a1) 換元型 f(ax)0或f (logax)0 數(shù)列 數(shù)列的基本概念 等差數(shù)列 (1)數(shù)列的通項(xiàng)公式anf(n) (2)數(shù)列的遞推公式 (3)數(shù)列的通項(xiàng)公式與前n項(xiàng)和的關(guān)系 an+1and ana1+(n1)d a,A,b成等差 2Aa+b m+nk+l am+anak+al 等比數(shù)列 常用求和公式 ana1qn1 a,G,b成等比 G2ab m+nk+l amanakal 不等式 不等式的基本性質(zhì) 重要不等式 ab ba ab,bc ac ab a+cb+c

9、 a+bc acb ab,cd a+cb+d ab,c0 acbc ab,c0 acbc ab0,cd0 acbd ab0 dnbn(nZ,n1) ab0 (nZ,n1) (ab)20 a,bR a2+b22ab |a|b|ab|a|+|b| 證明不等式的基本方法 比較法 (1)要證明不等式ab(或ab),只需證明 ab0(或ab0即可 (2)若b0,要證ab,只需證明 , 要證ab,只需證明 綜合法 綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式(由因?qū)Ч┑姆椒ā?分析法 分析法是從尋求結(jié)論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正

10、確時(shí)為止,明顯地表現(xiàn)出“持果索因” 復(fù)數(shù) 代數(shù)形式 三角形式 a+bic+di ac,bd (a+bi)+(c+di)(a+c)+(b+d)i (a+bi)(c+di)(ac)+(bd)i (a+bi)(c+di )(acbd)+(bc+ad)i a+bir(cos+isin) r1(cos1+isin1)r2(cos2+isin2) r1r2cos(1+2)+isin(1+2) r(cos+sin)nrn(cosn+isinn) k0,1,n1 解析幾何 1、直線 兩點(diǎn)距離、定比分點(diǎn) 直線方程 |AB| | |P1P2| yy1k(xx1) ykxb 兩直線的位置關(guān)系 夾角和距離 或k1k2

11、,且b1b2 l1與l2重合 或k1k2且b1b2 l1與l2相交 或k1k2 l2l2 或k1k21 l1到l2的角 l1與l2的夾角 點(diǎn)到直線的距離 2.圓錐曲線 圓 橢 圓 標(biāo)準(zhǔn)方程(xa)2(yb)2r2 圓心為(a,b),半徑為R 一般方程x2y2DxEyF0 其中圓心為( ), 半徑r (1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關(guān)系 (2)兩圓的位置關(guān)系用圓心距d與半徑和與差判斷 橢圓 焦點(diǎn)F1(c,0),F(xiàn)2(c,0) (b2a2c2) 離心率 準(zhǔn)線方程 焦半徑|MF1|aex0,|MF2|aex0 雙曲線 拋物線 雙曲線 焦點(diǎn)F1(c,0),F(xiàn)2(c

12、,0) (a,b0,b2c2a2) 離心率 準(zhǔn)線方程 焦半徑|MF1|ex0a,|MF2|ex0a 拋物線y22px(p0) 焦點(diǎn)F 準(zhǔn)線方程 坐標(biāo)軸的平移 這里(h,k)是新坐標(biāo)系的原點(diǎn)在原坐標(biāo)系中的坐標(biāo)。1集合元素具有確定性互異性無序性2集合表示方法列舉法 描述法韋恩圖 數(shù)軸法3集合的運(yùn)算 A(BC)=(AB)(AC) Cu(AB)=CuACuBCu(AB)=CuACuB4集合的性質(zhì)n元集合的子集數(shù):2n真子集數(shù):2n-1;非空真子集數(shù):2n-2高中數(shù)學(xué)概念總結(jié)一、 函數(shù)1、 若集合A中有n 個(gè)元素,則集合A的所有不同的子集個(gè)數(shù)為 ,所有非空真子集的個(gè)數(shù)是 。二次函數(shù) 的圖象的對(duì)稱軸方程是

13、 ,頂點(diǎn)坐標(biāo)是 。用待定系數(shù)法求二次函數(shù)的解析式時(shí),解析式的設(shè)法有三種形式,即 , 和 (頂點(diǎn)式)。2、 冪函數(shù) ,當(dāng)n為正奇數(shù),m為正偶數(shù),mn時(shí),其大致圖象是3、 函數(shù) 的大致圖象是由圖象知,函數(shù)的值域是 ,單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是 。二、 三角函數(shù) 1、 以角 的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸正半軸建立直角坐標(biāo)系,在角 的終邊上任取一個(gè)異于原點(diǎn)的點(diǎn) ,點(diǎn)P到原點(diǎn)的距離記為 ,則sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。2、同角三角函數(shù)的關(guān)系中,平方關(guān)系是: , , ;倒數(shù)關(guān)系是: , , ;相除關(guān)系是: , 。3、誘導(dǎo)公式可用十個(gè)字概括為:奇變

14、偶不變,符號(hào)看象限。如: , = , 。4、 函數(shù) 的最大值是 ,最小值是 ,周期是 ,頻率是 ,相位是 ,初相是 ;其圖象的對(duì)稱軸是直線 ,凡是該圖象與直線 的交點(diǎn)都是該圖象的對(duì)稱中心。5、 三角函數(shù)的單調(diào)區(qū)間: 的遞增區(qū)間是 ,遞減區(qū)間是 ; 的遞增區(qū)間是 ,遞減區(qū)間是 , 的遞增區(qū)間是 , 的遞減區(qū)間是 。6、 7、二倍角公式是:sin2 = cos2 = = = tg2 = 。8、三倍角公式是:sin3 = cos3 = 9、半角公式是:sin = cos = tg = = = 。10、升冪公式是: 。11、降冪公式是: 。12、萬能公式:sin = cos = tg = 13、sin

15、( )sin( )= ,cos( )cos( )= = 。14、 = ; = ; = 。15、 = 。16、sin180= 。17、特殊角的三角函數(shù)值: 0 sin 0 1 0 cos 1 0 0tg 0 1 不存在 0 不存在ctg 不存在 1 0 不存在 018、正弦定理是(其中R表示三角形的外接圓半徑): 19、由余弦定理第一形式, = 由余弦定理第二形式,cosB= 20、ABC的面積用S表示,外接圓半徑用R表示,內(nèi)切圓半徑用r表示,半周長(zhǎng)用p表示則: ; ; ; ; ; 21、三角學(xué)中的射影定理:在ABC 中, ,22、在ABC 中, ,23、在ABC 中: 24、積化和差公式: ,

16、 , , 。25、和差化積公式: , , , 。三、 反三角函數(shù) 1、 的定義域是-1,1,值域是 ,奇函數(shù),增函數(shù); 的定義域是-1,1,值域是 ,非奇非偶,減函數(shù); 的定義域是R,值域是 ,奇函數(shù),增函數(shù); 的定義域是R,值域是 ,非奇非偶,減函數(shù)。2、當(dāng) ; 對(duì)任意的 ,有: 當(dāng) 。3、最簡(jiǎn)三角方程的解集:四、 不等式 1、若n為正奇數(shù),由 可推出 嗎? ( 能 )若n為正偶數(shù)呢? ( 均為非負(fù)數(shù)時(shí)才能)2、同向不等式能相減,相除嗎 (不能)能相加嗎? ( 能 )能相乘嗎? (能,但有條件)3、兩個(gè)正數(shù)的均值不等式是: 三個(gè)正數(shù)的均值不等式是: n個(gè)正數(shù)的均值不等式是: 4、兩個(gè)正數(shù) 的

17、調(diào)和平均數(shù)、幾何平均數(shù)、算術(shù)平均數(shù)、均方根之間的關(guān)系是6、 雙向不等式是: 左邊在 時(shí)取得等號(hào),右邊在 時(shí)取得等號(hào)。五、 數(shù)列1、等差數(shù)列的通項(xiàng)公式是 ,前n項(xiàng)和公式是: = 。2、等比數(shù)列的通項(xiàng)公式是 ,前n項(xiàng)和公式是: 3、當(dāng)?shù)缺葦?shù)列 的公比q滿足 0,=0,0); 扇形面積公式: ; 圓錐側(cè)面展開圖(扇形)的圓心角公式: ; 圓臺(tái)側(cè)面展開圖(扇環(huán))的圓心角公式: 。 經(jīng)過圓錐頂點(diǎn)的最大截面的面積為(圓錐的母線長(zhǎng)為 ,軸截面頂角是):十一、比例的幾個(gè)性質(zhì)1、比例基本性質(zhì): 2、反比定理: 3、更比定理: 5、 合比定理; 6、 分比定理: 7、 合分比定理: 8、 分合比定理: 9、 等比

18、定理:若 , ,則 。十二、復(fù)合二次根式的化簡(jiǎn)當(dāng) 是一個(gè)完全平方數(shù)時(shí),對(duì)形如 的根式使用上述公式化簡(jiǎn)比較方便。并集元素個(gè)數(shù):n(AB)=nA+nB-n(AB)5N 自然數(shù)集或非負(fù)整數(shù)集Z 整數(shù)集 Q有理數(shù)集 R實(shí)數(shù)集6簡(jiǎn)易邏輯中符合命題的真值表p 非p真 假假 真二函數(shù)1二次函數(shù)的極點(diǎn)坐標(biāo):函數(shù) 的頂點(diǎn)坐標(biāo)為 2函數(shù) 的單調(diào)性:在 處取極值 3函數(shù)的奇偶性:在定義域內(nèi),若 ,則為偶函數(shù);若 則為奇函數(shù)。 1 過兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線

19、段最短 7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 2

20、1 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形

21、的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距

22、離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+

23、b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360 49四邊形的外角和等于360 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)180 - 51推論 任意多邊的外角和等于360 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59平行

24、四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對(duì)角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=(ab)2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等

25、,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必

26、平分另一腰 80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)2 S=Lh 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S? 84 (2)合比性質(zhì) 如果ab=cd,那么(ab)b=(cd)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線

27、段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)

28、 94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 - 101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可

29、以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線

30、經(jīng)過圓心,并且平分弦所對(duì)的兩條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所

31、對(duì)的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr ? 122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩

32、組對(duì)邊的和相等 128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng) 132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓

33、內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公*弦 137定理 把圓分成n(n3): 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139正n邊形的每個(gè)內(nèi)角都等于(n-2)180n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長(zhǎng) 142正三角形面積3a4 a表示邊長(zhǎng) 143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于

34、這些角的和應(yīng)為 360,因此k(n-2)180n=360化為(n-2)(k-2)=4 144弧長(zhǎng)計(jì)算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r) 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X

35、2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b2-4ac0 注:方程有兩個(gè)不等的實(shí)根 b2-4ac0;反向則aF2) 2.互成角度力的合成: F(F12+F22+2F1F2cos)1/2(余弦定理) F1F2時(shí):F(F12+F22)1/2 3.合力大小范圍:|F1-F2|F|F1+F2| 4.力的正交分解:FxFcos,F(xiàn)yFsin(為合力與x軸之間的夾角tgFy/Fx) 注: (1)力(矢量)的合成與分解遵循平行四邊形定則; (2)合力與分力的關(guān)系是等效替代關(guān)系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作圖法求

36、解,此時(shí)要選擇標(biāo)度,嚴(yán)格作圖; (4)F1與F2的值一定時(shí),F1與F2的夾角(角)越大,合力越小; (5)同一直線上力的合成,可沿直線取正方向,用正負(fù)號(hào)表示力的方向,化簡(jiǎn)為代數(shù)運(yùn)算。 四、動(dòng)力學(xué)(運(yùn)動(dòng)和力) 1.牛頓第一運(yùn)動(dòng)定律(慣性定律):物體具有慣性,總保持勻速直線運(yùn)動(dòng)狀態(tài)或靜止?fàn)顟B(tài),直到有外力迫使它改變這種狀態(tài)為止 2.牛頓第二運(yùn)動(dòng)定律:F合ma或aF合/ma由合外力決定,與合外力方向一致 3.牛頓第三運(yùn)動(dòng)定律:F-F負(fù)號(hào)表示方向相反,F、F各自作用在對(duì)方,平衡力與作用力反作用力區(qū)別,實(shí)際應(yīng)用:反沖運(yùn)動(dòng) 4.共點(diǎn)力的平衡F合0,推廣 正交分解法、三力匯交原理 5.超重:FNG,失重:FN

37、r 3.受迫振動(dòng)頻率特點(diǎn):ff驅(qū)動(dòng)力 4.發(fā)生共振條件:f驅(qū)動(dòng)力f固,Amax,共振的防止和應(yīng)用見第一冊(cè)P175 5.機(jī)械波、橫波、縱波見第二冊(cè)P2 6.波速vs/tf/T波傳播過程中,一個(gè)周期向前傳播一個(gè)波長(zhǎng);波速大小由介質(zhì)本身所決定 7.聲波的波速(在空氣中)0:332m/s;20:344m/s;30:349m/s;(聲波是縱波) 8.波發(fā)生明顯衍射(波繞過障礙物或孔繼續(xù)傳播)條件:障礙物或孔的尺寸比波長(zhǎng)小,或者相差不大 9.波的干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動(dòng)方向相同) 10.多普勒效應(yīng):由于波源與觀測(cè)者間的相互運(yùn)動(dòng),導(dǎo)致波源發(fā)射頻率與接收頻率不同相互接近,接收頻率增大

38、,反之,減小見第二冊(cè)P21 注: (1)物體的固有頻率與振幅、驅(qū)動(dòng)力頻率無關(guān),取決于振動(dòng)系統(tǒng)本身; (2)加強(qiáng)區(qū)是波峰與波峰或波谷與波谷相遇處,減弱區(qū)則是波峰與波谷相遇處; (3)波只是傳播了振動(dòng),介質(zhì)本身不隨波發(fā)生遷移,是傳遞能量的一種方式; (4)干涉與衍射是波特有的; (5)振動(dòng)圖象與波動(dòng)圖象; (6)其它相關(guān)內(nèi)容:超聲波及其應(yīng)用見第二冊(cè)P22/振動(dòng)中的能量轉(zhuǎn)化見第一冊(cè)P173。 六、沖量與動(dòng)量(物體的受力與動(dòng)量的變化) 1.動(dòng)量:pmv p:動(dòng)量(kg/s),m:質(zhì)量(kg),v:速度(m/s),方向與速度方向相同 3.沖量:IFt I:沖量(N?s),F(xiàn):恒力(N),t:力的作用時(shí)間

39、(s),方向由F決定 4.動(dòng)量定理:Ip或Ftmvtmvo p:動(dòng)量變化pmvtmvo,是矢量式 5.動(dòng)量守恒定律:p前總p后總或pp也可以是m1v1+m2v2m1v1+m2v2 6.彈性碰撞:p0;Ek0 即系統(tǒng)的動(dòng)量和動(dòng)能均守恒 7.非彈性碰撞p0;0r0,f引f斥,F(xiàn)分子力表現(xiàn)為引力 (4)r10r0,f引f斥0,F(xiàn)分子力0,E分子勢(shì)能0 5.熱力學(xué)第一定律W+QU(做功和熱傳遞,這兩種改變物體內(nèi)能的方式,在效果上是等效的), W:外界對(duì)物體做的正功(J),Q:物體吸收的熱量(J),U:增加的內(nèi)能(J),涉及到第一類永動(dòng)機(jī)不可造出見第二冊(cè)P40 6.熱力學(xué)第二定律 克氏表述:不可能使熱量

40、由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導(dǎo)的方向性); 開氏表述:不可能從單一熱源吸收熱量并把它全部用來做功,而不引起其它變化(機(jī)械能與內(nèi)能轉(zhuǎn)化的方向性)涉及到第二類永動(dòng)機(jī)不可造出見第二冊(cè)P44 7.熱力學(xué)第三定律:熱力學(xué)零度不可達(dá)到宇宙溫度下限:273.15攝氏度(熱力學(xué)零度) 注: (1)布朗粒子不是分子,布朗顆粒越小,布朗運(yùn)動(dòng)越明顯,溫度越高越劇烈; (2)溫度是分子平均動(dòng)能的標(biāo)志; 3)分子間的引力和斥力同時(shí)存在,隨分子間距離的增大而減小,但斥力減小得比引力快; (4)分子力做正功,分子勢(shì)能減小,在r0處F引F斥且分子勢(shì)能最??; (5)氣體膨脹,外界對(duì)氣體做負(fù)功W0;吸收熱量,

41、Q0 (6)物體的內(nèi)能是指物體所有的分子動(dòng)能和分子勢(shì)能的總和,對(duì)于理想氣體分子間作用力為零,分子勢(shì)能為零; (7)r0為分子處于平衡狀態(tài)時(shí),分子間的距離; (8)其它相關(guān)內(nèi)容:能的轉(zhuǎn)化和定恒定律見第二冊(cè)P41/能源的開發(fā)與利用、環(huán)保見第二冊(cè)P47/物體的內(nèi)能、分子的動(dòng)能、分子勢(shì)能見第二冊(cè)P47。 九、氣體的性質(zhì) 1.氣體的狀態(tài)參量: 溫度:宏觀上,物體的冷熱程度;微觀上,物體內(nèi)部分子無規(guī)則運(yùn)動(dòng)的劇烈程度的標(biāo)志, 熱力學(xué)溫度與攝氏溫度關(guān)系:Tt+273 T:熱力學(xué)溫度(K),t:攝氏溫度() 體積V:氣體分子所能占據(jù)的空間,單位換算:1m3103L106mL 壓強(qiáng)p:?jiǎn)挝幻娣e上,大量氣體分子頻繁

42、撞擊器壁而產(chǎn)生持續(xù)、均勻的壓力,標(biāo)準(zhǔn)大氣壓:1atm1.013105Pa76cmHg(1Pa1N/m2) 2.氣體分子運(yùn)動(dòng)的特點(diǎn):分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運(yùn)動(dòng)速率很大 3.理想氣體的狀態(tài)方程:p1V1/T1p2V2/T2 PV/T恒量,T為熱力學(xué)溫度(K) 注: (1)理想氣體的內(nèi)能與理想氣體的體積無關(guān),與溫度和物質(zhì)的量有關(guān); (2)公式3成立條件均為一定質(zhì)量的理想氣體,使用公式時(shí)要注意溫度的單位,t為攝氏溫度(),而T為熱力學(xué)溫度(K)。 十、電場(chǎng) 1.兩種電荷、電荷守恒定律、元電荷:(e1.6010-19C);帶電體電荷量等于元電荷的整數(shù)倍 2.庫(kù)侖定律:FkQ

43、1Q2/r2(在真空中)F:點(diǎn)電荷間的作用力(N),k:靜電力常量k9.0109N?m2/C2,Q1、Q2:兩點(diǎn)電荷的電量(C),r:兩點(diǎn)電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引 3.電場(chǎng)強(qiáng)度:EF/q(定義式、計(jì)算式)E:電場(chǎng)強(qiáng)度(N/C),是矢量(電場(chǎng)的疊加原理),q:檢驗(yàn)電荷的電量(C) 4.真空點(diǎn)(源)電荷形成的電場(chǎng)EkQ/r2 r:源電荷到該位置的距離(m),Q:源電荷的電量 5.勻強(qiáng)電場(chǎng)的場(chǎng)強(qiáng)EUAB/d UAB:AB兩點(diǎn)間的電壓(V),d:AB兩點(diǎn)在場(chǎng)強(qiáng)方向的距離(m) 6.電場(chǎng)力:FqE F:電場(chǎng)力(N),q:受到電場(chǎng)力的電荷

44、的電量(C),E:電場(chǎng)強(qiáng)度(N/C) 7.電勢(shì)與電勢(shì)差:UABA-B,UABWAB/q-EAB/q 8.電場(chǎng)力做功:WABqUABEqdWAB:帶電體由A到B時(shí)電場(chǎng)力所做的功(J),q:帶電量(C),UAB:電場(chǎng)中A、B兩點(diǎn)間的電勢(shì)差(V)(電場(chǎng)力做功與路徑無關(guān)),E:勻強(qiáng)電場(chǎng)強(qiáng)度,d:兩點(diǎn)沿場(chǎng)強(qiáng)方向的距離(m) 9.電勢(shì)能:EAqA EA:帶電體在A點(diǎn)的電勢(shì)能(J),q:電量(C),A:A點(diǎn)的電勢(shì)(V) 10.電勢(shì)能的變化EABEB-EA 帶電體在電場(chǎng)中從A位置到B位置時(shí)電勢(shì)能的差值 11.電場(chǎng)力做功與電勢(shì)能變化EAB-WAB-qUAB (電勢(shì)能的增量等于電場(chǎng)力做功的負(fù)值) 12.電容CQ/

45、U(定義式,計(jì)算式) C:電容(F),Q:電量(C),U:電壓(兩極板電勢(shì)差)(V) 13.平行板電容器的電容CS/4kd(S:兩極板正對(duì)面積,d:兩極板間的垂直距離,:介電常數(shù)) 常見電容器見第二冊(cè)P111 14.帶電粒子在電場(chǎng)中的加速(Vo0):WEK或qUmVt2/2,Vt(2qU/m)1/2 15.帶電粒子沿垂直電場(chǎng)方向以速度Vo進(jìn)入勻強(qiáng)電場(chǎng)時(shí)的偏轉(zhuǎn)(不考慮重力作用的情況下) 類平 垂直電場(chǎng)方向:勻速直線運(yùn)動(dòng)LVot(在帶等量異種電荷的平行極板中:EU/d) 拋運(yùn)動(dòng) 平行電場(chǎng)方向:初速度為零的勻加速直線運(yùn)動(dòng)dat2/2,aF/mqE/m 注: (1)兩個(gè)完全相同的帶電金屬小球接觸時(shí),電

46、量分配規(guī)律:原帶異種電荷的先中和后平分,原帶同種電荷的總量平分; (2)電場(chǎng)線從正電荷出發(fā)終止于負(fù)電荷,電場(chǎng)線不相交,切線方向?yàn)閳?chǎng)強(qiáng)方向,電場(chǎng)線密處場(chǎng)強(qiáng)大,順著電場(chǎng)線電勢(shì)越來越低,電場(chǎng)線與等勢(shì)線垂直; (3)常見電場(chǎng)的電場(chǎng)線分布要求熟記見圖第二冊(cè)P98; (4)電場(chǎng)強(qiáng)度(矢量)與電勢(shì)(標(biāo)量)均由電場(chǎng)本身決定,而電場(chǎng)力與電勢(shì)能還與帶電體帶的電量多少和電荷正負(fù)有關(guān); (5)處于靜電平衡導(dǎo)體是個(gè)等勢(shì)體,表面是個(gè)等勢(shì)面,導(dǎo)體外表面附近的電場(chǎng)線垂直于導(dǎo)體表面,導(dǎo)體內(nèi)部合場(chǎng)強(qiáng)為零,導(dǎo)體內(nèi)部沒有凈電荷,凈電荷只分布于導(dǎo)體外表面; (6)電容單位換算:1F106F1012PF; (7)電子伏(eV)是能量的單

47、位,1eV1.6010-19J; (8)其它相關(guān)內(nèi)容:靜電屏蔽見第二冊(cè)P101/示波管、示波器及其應(yīng)用見第二冊(cè)P114等勢(shì)面見第二冊(cè)P105。 十一、恒定電流 1.電流強(qiáng)度:Iq/tI:電流強(qiáng)度(A),q:在時(shí)間t內(nèi)通過導(dǎo)體橫載面的電量(C),t:時(shí)間(s) 2.歐姆定律:IU/R I:導(dǎo)體電流強(qiáng)度(A),U:導(dǎo)體兩端電壓(V),R:導(dǎo)體阻值() 3.電阻、電阻定律:RL/S:電阻率(?m),L:導(dǎo)體的長(zhǎng)度(m),S:導(dǎo)體橫截面積(m2) 4.閉合電路歐姆定律:IE/(r+R)或EIr+IR也可以是EU內(nèi)+U外 I:電路中的總電流(A),E:電源電動(dòng)勢(shì)(V),R:外電路電阻(),r:電源內(nèi)阻(

48、) 5.電功與電功率:WUIt,PUIW:電功(J),U:電壓(V),I:電流(A),t:時(shí)間(s),P:電功率(W) 6.焦耳定律:QI2RtQ:電熱(J),I:通過導(dǎo)體的電流(A),R:導(dǎo)體的電阻值(),t:通電時(shí)間(s) 7.純電阻電路中:由于IU/R,WQ,因此WQUItI2RtU2t/R 8.電源總動(dòng)率、電源輸出功率、電源效率:P總IE,P出IU,P出/P總I:電路總電流(A),E:電源電動(dòng)勢(shì)(V),U:路端電壓(V),:電源效率 9.電路的串/并聯(lián) 串聯(lián)電路(P、U與R成正比) 并聯(lián)電路(P、I與R成反比) 電阻關(guān)系(串同并反) R串R1+R2+R3+ 1/R并1/R1+1/R2+

49、1/R3+ 電流關(guān)系 I總I1I2I3 I并I1+I2+I3+ 電壓關(guān)系 U總U1+U2+U3+ U總U1U2U3 功率分配 P總P1+P2+P3+ P總P1+P2+P3+ 10.歐姆表測(cè)電阻 (1)電路組成 (2)測(cè)量原理 兩表筆短接后,調(diào)節(jié)Ro使電表指針滿偏,得 IgE/(r+Rg+Ro) 接入被測(cè)電阻Rx后通過電表的電流為 IxE/(r+Rg+Ro+Rx)E/(R中+Rx) 由于Ix與Rx對(duì)應(yīng),因此可指示被測(cè)電阻大小 (3)使用方法:機(jī)械調(diào)零、選擇量程、歐姆調(diào)零、測(cè)量讀數(shù)注意擋位(倍率)、撥off擋。 (4)注意:測(cè)量電阻時(shí),要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐

50、姆調(diào)零。 11.伏安法測(cè)電阻 電流表內(nèi)接法: 電壓表示數(shù):UUR+UA 電流表外接法: 電流表示數(shù):IIR+IV Rx的測(cè)量值U/I(UA+UR)/IRRA+RxR真 Rx的測(cè)量值U/IUR/(IR+IV)RVRx/(RV+R)RA 或Rx(RARV)1/2 選用電路條件RxRx 電壓調(diào)節(jié)范圍大,電路復(fù)雜,功耗較大 便于調(diào)節(jié)電壓的選擇條件Rp電壓調(diào)節(jié)范圍大,電路復(fù)雜,功耗較大 便于調(diào)節(jié)電壓的選擇條件RpRx 注1)單位換算:1A103mA106A;1kV103V106mA;1M103k106 (2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大; (3)串聯(lián)總電阻大于任何一個(gè)

51、分電阻,并聯(lián)總電阻小于任何一個(gè)分電阻; (4)當(dāng)電源有內(nèi)阻時(shí),外電路電阻增大時(shí),總電流減小,路端電壓增大; (5)當(dāng)外電路電阻等于電源電阻時(shí),電源輸出功率最大,此時(shí)的輸出功率為E2/(2r); (6)其它相關(guān)內(nèi)容:電阻率與溫度的關(guān)系半導(dǎo)體及其應(yīng)用超導(dǎo)及其應(yīng)用見第二冊(cè)P127。 十二、磁場(chǎng) 1.磁感應(yīng)強(qiáng)度是用來表示磁場(chǎng)的強(qiáng)弱和方向的物理量,是矢量,單位T),1T1N/A?m 2.安培力FBIL;(注:LB) B:磁感應(yīng)強(qiáng)度(T),F:安培力(F),I:電流強(qiáng)度(A),L:導(dǎo)線長(zhǎng)度(m) 3.洛侖茲力fqVB(注VB);質(zhì)譜儀見第二冊(cè)P155 f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒

52、子速度(m/s) 4.在重力忽略不計(jì)(不考慮重力)的情況下,帶電粒子進(jìn)入磁場(chǎng)的運(yùn)動(dòng)情況(掌握兩種): (1)帶電粒子沿平行磁場(chǎng)方向進(jìn)入磁場(chǎng):不受洛侖茲力的作用,做勻速直線運(yùn)動(dòng)VV0 (2)帶電粒子沿垂直磁場(chǎng)方向進(jìn)入磁場(chǎng):做勻速圓周運(yùn)動(dòng),規(guī)律如下a)F向f洛mV2/rm2rmr(2/T)2qVB;rmV/qB;T2m/qB;(b)運(yùn)動(dòng)周期與圓周運(yùn)動(dòng)的半徑和線速度無關(guān),洛侖茲力對(duì)帶電粒子不做功(任何情況下);(c)解題關(guān)鍵:畫軌跡、找圓心、定半徑、圓心角(二倍弦切角)。 注: (1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負(fù); (2)磁感線的特點(diǎn)及其常見磁場(chǎng)的磁感線

53、分布要掌握見圖及第二冊(cè)P144;(3)其它相關(guān)內(nèi)容:地磁場(chǎng)/磁電式電表原理見第二冊(cè)P150/回旋加速器見第二冊(cè)P156/磁性材料 十三、電磁感應(yīng) 1.感應(yīng)電動(dòng)勢(shì)的大小計(jì)算公式 1)En/t(普適公式)法拉第電磁感應(yīng)定律,E:感應(yīng)電動(dòng)勢(shì)(V),n:感應(yīng)線圈匝數(shù),/t:磁通量的變化率 2)EBLV垂(切割磁感線運(yùn)動(dòng)) L:有效長(zhǎng)度(m) 3)EmnBS(交流發(fā)電機(jī)最大的感應(yīng)電動(dòng)勢(shì)) Em:感應(yīng)電動(dòng)勢(shì)峰值 4)EBL2/2(導(dǎo)體一端固定以旋轉(zhuǎn)切割) :角速度(rad/s),V:速度(m/s) 2.磁通量BS :磁通量(Wb),B:勻強(qiáng)磁場(chǎng)的磁感應(yīng)強(qiáng)度(T),S:正對(duì)面積(m2) 3.感應(yīng)電動(dòng)勢(shì)的正負(fù)

54、極可利用感應(yīng)電流方向判定電源內(nèi)部的電流方向:由負(fù)極流向正極 *4.自感電動(dòng)勢(shì)E自n/tLI/tL:自感系數(shù)(H)(線圈L有鐵芯比無鐵芯時(shí)要大),I:變化電流,?t:所用時(shí)間,I/t:自感電流變化率(變化的快慢) 注:(1)感應(yīng)電流的方向可用楞次定律或右手定則判定,楞次定律應(yīng)用要點(diǎn)見第二冊(cè)P173;(2)自感電流總是阻礙引起自感電動(dòng)勢(shì)的電流的變化;(3)單位換算:1H103mH106H。(4)其它相關(guān)內(nèi)容:自感見第二冊(cè)P178/日光燈見第二冊(cè)P180。 十四、交變電流(正弦式交變電流) 1.電壓瞬時(shí)值eEmsint 電流瞬時(shí)值iImsint;(2f) 2.電動(dòng)勢(shì)峰值EmnBS2BLv 電流峰值(

55、純電阻電路中)ImEm/R總 3.正(余)弦式交變電流有效值:EEm/(2)1/2;UUm/(2)1/2 ;IIm/(2)1/2 4.理想變壓器原副線圈中的電壓與電流及功率關(guān)系 U1/U2n1/n2; I1/I2n2/n2; P入P出 5.在遠(yuǎn)距離輸電中,采用高壓輸送電能可以減少電能在輸電線上的損失損(P/U)2R;(P損:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)見第二冊(cè)P198; 6.公式1、2、3、4中物理量及單位::角頻率(rad/s);t:時(shí)間(s);n:線圈匝數(shù);B:磁感強(qiáng)度(T); S:線圈的面積(m2);U輸出)電壓(V);I:電流強(qiáng)度(A);P:

56、功率(W)。高中所有化學(xué)方程式+反映說明+反映現(xiàn)象方程式: 1、硫酸根離子的檢驗(yàn): BaCl2 + Na2SO4 = BaSO4+ 2NaCl 2、碳酸根離子的檢驗(yàn): CaCl2 + Na2CO3 = CaCO3 + 2NaCl 3、碳酸鈉與鹽酸反應(yīng): Na2CO3 + 2HCl = 2NaCl + H2O + CO2 4、木炭還原氧化銅: 2CuO + C 高溫 2Cu + CO2 5、鐵片與硫酸銅溶液反應(yīng): Fe + CuSO4 = FeSO4 + Cu 6、氯化鈣與碳酸鈉溶液反應(yīng):CaCl2 + Na2CO3 = CaCO3+ 2NaCl 7、鈉在空氣中燃燒:2Na + O2 Na2O2

57、 鈉與氧氣反應(yīng):4Na + O2 = 2Na2O 8、過氧化鈉與水反應(yīng):2Na2O2 + 2H2O = 4NaOH + O2 9、過氧化鈉與二氧化碳反應(yīng):2Na2O2 + 2CO2 = 2Na2CO3 + O2 10、鈉與水反應(yīng):2Na + 2H2O = 2NaOH + H2 11、鐵與水蒸氣反應(yīng):3Fe + 4H2O(g) = F3O4 + 4H2 12、鋁與氫氧化鈉溶液反應(yīng):2Al + 2NaOH + 2H2O = 2NaAlO2 + 3H2 13、氧化鈣與水反應(yīng):CaO + H2O = Ca(OH)2 14、氧化鐵與鹽酸反應(yīng):Fe2O3 + 6HCl = 2FeCl3 + 3H2O 15

58、、氧化鋁與鹽酸反應(yīng):Al2O3 + 6HCl = 2AlCl3 + 3H2O 16、氧化鋁與氫氧化鈉溶液反應(yīng):Al2O3 + 2NaOH = 2NaAlO2 + H2O 17、氯化鐵與氫氧化鈉溶液反應(yīng):FeCl3 + 3NaOH = Fe(OH)3+ 3NaCl 18、硫酸亞鐵與氫氧化鈉溶液反應(yīng):FeSO4 + 2NaOH = Fe(OH)2+ Na2SO4 19、氫氧化亞鐵被氧化成氫氧化鐵:4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 20、氫氧化鐵加熱分解:2Fe(OH)3 Fe2O3 + 3H2O 21、實(shí)驗(yàn)室制取氫氧化鋁:Al2(SO4)3 + 6NH3H2O = 2

59、Al(OH)3 + 3(NH3)2SO4 22、氫氧化鋁與鹽酸反應(yīng):Al(OH)3 + 3HCl = AlCl3 + 3H2O 23、氫氧化鋁與氫氧化鈉溶液反應(yīng):Al(OH)3 + NaOH = NaAlO2 + 2H2O 24、氫氧化鋁加熱分解:2Al(OH)3 Al2O3 + 3H2O 25、三氯化鐵溶液與鐵粉反應(yīng):2FeCl3 + Fe = 3FeCl2 26、氯化亞鐵中通入氯氣:2FeCl2 + Cl2 = 2FeCl3 27、二氧化硅與氫氟酸反應(yīng):SiO2 + 4HF = SiF4 + 2H2O 硅單質(zhì)與氫氟酸反應(yīng):Si + 4HF = SiF4 + 2H2 28、二氧化硅與氧化鈣高

60、溫反應(yīng):SiO2 + CaO 高溫 CaSiO3 29、二氧化硅與氫氧化鈉溶液反應(yīng):SiO2 + 2NaOH = Na2SiO3 + H2O 30、往硅酸鈉溶液中通入二氧化碳:Na2SiO3 + CO2 + H2O = Na2CO3 + H2SiO3 31、硅酸鈉與鹽酸反應(yīng):Na2SiO3 + 2HCl = 2NaCl + H2SiO3 32、氯氣與金屬鐵反應(yīng):2Fe + 3Cl2 點(diǎn)燃 2FeCl3 33、氯氣與金屬銅反應(yīng):Cu + Cl2 點(diǎn)燃 CuCl2 34、氯氣與金屬鈉反應(yīng):2Na + Cl2 點(diǎn)燃 2NaCl 35、氯氣與水反應(yīng):Cl2 + H2O = HCl + HClO 36、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論