


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Reading material 1 Static Analysis of BeamsNote that uses up one of the three independent equations of statics, thus only two additional reaction components may be determinated from statics. If more unknow reaction components or moments exist at the support, the problem becomes statically indetermin
2、ate.A bar that is subjected to forces acting trasverse to its axis is called a beam. In this section we consider only a few of the simplest types of beams, such as those shown in Flag.1.2. In every instance it is assumed that the beam has a plane of symmetry that is parallel to the plane of the figu
3、re itself. Thus,the cross section of the beam has a vertical axis of symmetry.Also,it is assumed that the applied loads act in the plane of symmetry,and hence bending of the beam occurs in that plane. Later we will consider a more general kind of bending in which the beam may have an unsymmetrical c
4、ross section.The beam in Fig.1.2(a), with a pin support at one end and a roller support at the other, is called a simply support beam ,or a simple beam. The essential feature of a simple beam is that both ends of the beam may rotate freely during bending, but they cannot translate in lateral directi
5、on. Also ,one end of the beam can move freely in the axial direction (that is, horizontally). The supports of a simple beam may sustain vertical reactions acting either upward or downward .The beam in Flg.1.2(b) which is built-in or fixed at one end and free at the other end, is called a cantilever
6、beam. At the fixed support the beam can neither rotate nor translate, while at the free end it may do both. The third example in the figure shows a beam with an overhang. This beam is simply supported at A and B and has a free at C.Loads on a beam may be concentrated forces, such as P1 and P2 in Fig
7、.1.2(a) and (c), or distributed loads , such as the the load q in Fig.1.2(b),。Distributed loads are characterized by their intensity,which is expressed in units of force per unit distance along the axis of the beam. For a uniformly distributed load, illustrated in Fig.1.2(b),the intensity is constan
8、t; a varying load, on the other hand, is one in which the intensity varies as a function of distance along the axis of the beam.The beams shown in Fig.1.2 are statically determinate because all their reactions can be determined from equations of static equilibrium. For instance ,in the case of the s
9、imple beam supporting the load P1 Fig.1.2(a), both reactions are vertical, and their magnitudes can be found by summing moments about the ends; thus, we find The reactions for the beam with an overhang Fig.1.2 (c)can be found the same mannerFor the cantilever beamFig.1.2(b), the action of the applie
10、d load q is equilibrated by a vertical force RA and a couple MA acting at the fixed support, as shown in the figure. From a summation of forces in vertical direction , we include thatAnd ,from a summation of moments about point A, we findThe reactive moment MA acts counterclockwise as shown in the f
11、igureThe preceding examples illustrate how the reactions(forces and moments) of statically determinate beams may be calculated by statics.The determination of the reactions for statically indeterminate beams requires a considerition of the bending of the beams , and hence this subject will be postpo
12、ned.The idealized support conditions shown in Fig.1.2 are encountered only occasionally in practice. As an example ,long-span beams in bridges sometimes are constructionn with pin and roller supports at the ends. However, in beams of shorter span ,there is usually some restraint against horizonal mo
13、vement of the supports. Under most conditions this restraint has little effect on the action of the beam and can be neglected. However, if the beam is very flexible, and if the horizonal restraints at the ends are very rigid , it may be necessary to consider their effects. Example*Find the reactions
14、 at the supports for a simple beam loaded as shown in fig.1.3(a ). Neglect the weight of the beam.SolutionThe loading of the beam is already given in diagrammatic form. The nature of the supports isexamined next and the unknown components of reactions are boldly indicated on the diagram. The beam ,
15、with the unknow reaction components and all the applied forces, is redrawn in Fig.1.3(b) to deliberately emphasiz this important step in constructing a free-body diagram. At A, two unknow reaction components may exist , since the end is pinned. The reaction at B can only act in a vertical direction
16、since the end is on a roller.The points of application of all forces are carefully noted. After a free-body diagram of the beam is made, the equations of statics are applied to obtain the solution. Note that the concentrated moment applied at C enters only the expressions for summation moments. The
17、positive sign of RB indicates that the direction of RB has been correctly assumed in Fig.1.3(b). The inverse is the case of RAY ,and the vertical reaction at a is downward. Noted that a check on the arithmetical work is available if the calculations are made as shown.閱讀材料1梁的靜力分析在其軸線上受到橫向力的桿我們稱之為梁。在此
18、,我們僅一些最簡(jiǎn)單的類型,如圖1.2所示情形作分析。在每一例中,我們假定有一平面平行于物體表面。從而,橫梁的交叉部分就有一條垂直的軸線。同時(shí)假設(shè)有力作用于平行面上,導(dǎo)致該面發(fā)生彎曲。而后,我們將這種情形推廣至一種更普遍的即橫梁沒有對(duì)稱交叉部分的情況。如圖1.2(a)所示的一端受銷釘支撐、另一端受滾動(dòng)支座支撐的桿我們稱之為“簡(jiǎn)力支撐桿”或“簡(jiǎn)支桿”。簡(jiǎn)支桿的基本特征是其兩端都可自由旋轉(zhuǎn),但不可橫向移動(dòng)?;蛘邨U的一端可以在軸線方向上(即水平方向)自由移動(dòng)。簡(jiǎn)支桿的支撐端可以維向上或向下的垂直反力。如圖1.2(b)中一端固定,另一端自由的桿稱為“懸梁”。其一端既不可轉(zhuǎn)動(dòng)也不可移動(dòng),另一端則完全相反。
19、第三個(gè)圖所示為一伸出桿。其在A、B端受支撐,C端自由。梁的負(fù)載有可能是集中力,比如圖1.2(a)1.2(c)中的P1和P2,或是分散力,比如圖1.2(c)中的q。分散力往往通過其密度來表述,單位是在梁的軸向方向上每單位長(zhǎng)度的受力大小。均勻規(guī)律分布的分散負(fù)載,如圖1.2(b)所示,其密度固定不變;而對(duì)于變化的負(fù)載,其密度作為梁的軸向上的函數(shù)而隨時(shí)改變。 圖1.2中的梁均可靜態(tài)確定因?yàn)樗鼈兯艿姆醋饔昧筛鶕?jù)靜態(tài)平衡方程確定。例如,在如圖1.2(a)的簡(jiǎn)支梁的負(fù)載中,其反作用力均為垂直的,其大小均可通過統(tǒng)計(jì)兩端的力矩得出。由此我們得到RA= EQ F(P1(L-a),L) RB= EQ F(P1a,L) 如圖1.2(c)中所示帶有伸出部分的梁的反作用力可以用同樣的方法得出。圖1.2(c)中的懸梁,應(yīng)用負(fù)載在一豎直力RA和一力偶MA的作用下使梁保持平衡。對(duì)豎直方向上的力作統(tǒng)計(jì),我們得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6《景陽岡》教學(xué)設(shè)計(jì)2024-2025學(xué)年統(tǒng)編版語文五年級(jí)下冊(cè)
- 5一個(gè)豆莢里的五粒豆 第一課時(shí) 教學(xué)設(shè)計(jì)2024-2025學(xué)年語文四年級(jí)上冊(cè)統(tǒng)編版
- 13 橋 教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版語文六年級(jí)上冊(cè)
- Unit9Section B(2a-2c)教學(xué)設(shè)計(jì)2023-2024學(xué)年人教版七年級(jí)英語下冊(cè)
- 9《木蘭詩》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年七年級(jí)語文下冊(cè)同步教學(xué)設(shè)計(jì)(統(tǒng)編版2024)
- 網(wǎng)絡(luò)銷售員工培訓(xùn)
- 2024學(xué)年九年級(jí)物理上冊(cè) 第8章 電磁相互作用及應(yīng)用 8.3電話和傳感器教學(xué)設(shè)計(jì) (新版)教科版
- 生鮮倉庫安全培訓(xùn)
- 2024秋七年級(jí)數(shù)學(xué)上冊(cè) 第二章 有理數(shù)2.9有理數(shù)的乘法 1有理數(shù)的乘法法則教學(xué)設(shè)計(jì)(新版)華東師大版
- 1《北京的春節(jié)》教學(xué)設(shè)計(jì)2023-2024學(xué)年統(tǒng)編版語文六年級(jí)下冊(cè)
- 2025陜西核工業(yè)工程勘察院有限公司招聘(21人)筆試參考題庫附帶答案詳解
- 2025年山東、湖北部分重點(diǎn)中學(xué)高中畢業(yè)班第二次模擬考試數(shù)學(xué)試題含解析
- 2025-2030中國集裝箱化和模塊化數(shù)據(jù)中心行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析研究報(bào)告
- 2025-2030中國防腐新材料行業(yè)市場(chǎng)深度調(diào)研及發(fā)展策略與投資前景預(yù)測(cè)研究報(bào)告
- 2025年超高功率大噸位電弧爐項(xiàng)目發(fā)展計(jì)劃
- 2025年護(hù)工考試試題及答案
- 2024年四川省高等職業(yè)教育單獨(dú)考試招生文化素質(zhì)考試中職英語試卷
- 全國第9個(gè)近視防控月活動(dòng)總結(jié)
- 人教A版必修第二冊(cè)高一(下)數(shù)學(xué)6.3.2-6.3.3平面向量正交分解及坐標(biāo)表示【課件】
- 2025至2030年中國快速換模系統(tǒng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 航空業(yè)勞動(dòng)力安全保障措施
評(píng)論
0/150
提交評(píng)論