




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
矢量的基本運(yùn)算三種常用的坐標(biāo)系矢量場(chǎng)和標(biāo)量場(chǎng)標(biāo)量函數(shù)的梯度矢量函數(shù)的散度矢量函數(shù)的旋度亥姆霍茲定理矢量分析散度
散度代表場(chǎng)中任一點(diǎn)處,通量對(duì)體積的變化率,因此又可稱為通量源密度。
矢量的散度是一個(gè)標(biāo)量,是空間坐標(biāo)點(diǎn)的函數(shù),體積縮小趨近于0點(diǎn);內(nèi)容回顧--散度與高斯定理對(duì)通量用兩種方法來(lái)求解結(jié)果必然相等面積分與體積分之間的關(guān)系高斯散度定理旋度
旋度代表場(chǎng)中任一點(diǎn)處,環(huán)流面密度的最大值及取最大值時(shí)的方向
矢量的旋度是矢量,是空間坐標(biāo)點(diǎn)的函數(shù),面積縮小趨于0點(diǎn);內(nèi)容回顧—旋度是否有類似于高斯散度定理的關(guān)系存在??流速場(chǎng)閉合路徑的環(huán)量的求法---斯托克斯定理1.根據(jù)定義來(lái)求解2.根據(jù)旋度來(lái)求解旋度的含義:環(huán)流面密度的最大值,當(dāng)方向一致時(shí)對(duì)同一個(gè)物理量用兩種方法來(lái)求解結(jié)果必然相等證明:由旋度的定義對(duì)于有限大面積S,可將其按如圖方式進(jìn)行分割,對(duì)每一小面積元有斯托克斯定理斯托克斯(Stockes)定理矢量對(duì)閉合回路的線積分等于該回路所包圍任意表面上對(duì)該矢量旋度的面積分。在電磁場(chǎng)理論中,Gauss公式和Stockes公式是兩個(gè)非常重要的公式。
矢量函數(shù)的線積分與面積分的互換。
該公式表明了區(qū)域S中場(chǎng)A與邊界L上的場(chǎng)A之間的關(guān)系圖0.4.3斯托克斯定理斯托克斯(Stockes)定理的意義線積分---面積分-----體積分例1-8:已知F=ayxy-ay2x,計(jì)算如圖所示的第一象限半徑為3的1/4圓盤的逆時(shí)針?lè)较蚓€積分,并驗(yàn)證斯托克斯定理.解:用直角坐標(biāo)系,由于F在xOy平面上,故dz=0.1/4圓周的方程為:x2+y2=9(0<x,y<3)由于在OA路徑上有y=0,dy=0,及在BO路徑上有x=0,dx=0,即Fdl在這兩部分積分中均為0,所以xyAB0由上可得:所以:例1-9
求矢量場(chǎng)A=x(z-y)ax+y(x-z)ay+z(y-x)az在點(diǎn)M(1,0,1)處的旋度以及沿n=2ax+6ay+3az方向的環(huán)量面密度。提示:利用旋度來(lái)求解解:矢量場(chǎng)A的旋度在點(diǎn)M(1,0,1)處的旋度n方向的單位矢量在點(diǎn)M(1,0,1)處沿n方向的環(huán)量面密度例1-10
在坐標(biāo)原點(diǎn)處放置一點(diǎn)電荷q,在自由空間產(chǎn)生的電場(chǎng)強(qiáng)度為求自由空間任意點(diǎn)(r≠0)電場(chǎng)強(qiáng)度的旋度▽×E。解:靜電場(chǎng):為無(wú)旋場(chǎng),旋度為0。兩個(gè)零恒等式任何標(biāo)量場(chǎng)梯度的旋度恒為零。任何矢量場(chǎng)的旋度的散度恒為零。重要的場(chǎng)論公式類比梯度類似于“縱向”的概念,旋度類似于“橫向”的概念
兩種類型的“源”一、亥姆霍茲定理:在有限區(qū)域內(nèi),矢量場(chǎng)由它的散度、旋度及邊界條件惟一地確定。(1)矢量場(chǎng)可分解為一個(gè)無(wú)旋有散場(chǎng)和有旋無(wú)散場(chǎng)之和;(2)若矢量場(chǎng)在某區(qū)域內(nèi)處處:和
則由其在邊界上的場(chǎng)分布確定。注意:不存在整個(gè)空間內(nèi)散度和旋度處處均為零的矢量場(chǎng)。說(shuō)明:亥姆霍茲定理通量源漩渦源二、無(wú)旋場(chǎng)與無(wú)散場(chǎng)1、無(wú)旋場(chǎng):但在某些位置或整個(gè)空間內(nèi),有則稱在該區(qū)域內(nèi),場(chǎng)為無(wú)旋場(chǎng)。重要性質(zhì):
無(wú)旋場(chǎng)場(chǎng)矢量沿任何閉合路徑的環(huán)流等于零(無(wú)旋渦源)。由于可引入一個(gè)矢量輔助函數(shù)表征標(biāo)量場(chǎng)2、無(wú)散場(chǎng):
重要性質(zhì):
無(wú)散場(chǎng)通過(guò)任何閉合曲面S的通量等于零(無(wú)通量源)。結(jié)論:若矢量場(chǎng)在某區(qū)域內(nèi),處處
若矢量場(chǎng)在某區(qū)域內(nèi),處處,但則稱在該區(qū)域內(nèi),場(chǎng)為無(wú)散場(chǎng)。結(jié)論:討論:由于,可引入一個(gè)矢量輔助函數(shù)表征矢量場(chǎng)即稱為無(wú)散場(chǎng)的矢量位函數(shù)。3、就矢量場(chǎng)整體而言,無(wú)旋場(chǎng)的散度不能處處為零,而無(wú)散場(chǎng)的旋度不能處處為零,一般的矢量場(chǎng),可能既有散度,又有旋度。已知矢量A的通量源密度矢量A的旋度源密度場(chǎng)域邊界條件在電磁場(chǎng)中電荷密度電流密度J場(chǎng)域邊界條件(矢量A唯一地確定)亥姆霍茲定理的意義:是研究電磁場(chǎng)的一條主線。電荷電流電場(chǎng)磁場(chǎng)靜電場(chǎng)變電場(chǎng)變的磁場(chǎng)靜的磁場(chǎng)源場(chǎng)例:判斷矢量場(chǎng)的性質(zhì)=0=0=000=0下列哪種場(chǎng)存在?1.無(wú)旋有散場(chǎng)2.有旋無(wú)散場(chǎng)3.無(wú)旋無(wú)散場(chǎng)4.有旋有散場(chǎng)本章小結(jié)運(yùn)算關(guān)系梯度通量散度高斯定理環(huán)量旋度斯托克斯定理例1-11:證明矢量A旋度的散度恒為零。
例1-12:證明標(biāo)量A梯度的旋度恒為零。
例1-11:證明矢量A旋度的散度恒為零。
證明:利用Del算子
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- (2024年秋季版)山東省鄒平縣七年級(jí)歷史下冊(cè) 第三單元 第23課 從鄭和下西洋到閉關(guān)鎖國(guó)教學(xué)實(shí)錄 北師大版
- 2025年護(hù)師類之主管護(hù)師考試題庫(kù)
- 唐山市灤縣二中高三期中考試?yán)砭C試卷
- 公眾號(hào)管理競(jìng)選方案
- 北京天安偉業(yè)天津海河左岸新天項(xiàng)目形象策略
- 小學(xué)生考前教育
- 廣東省茂名市5+2校際聯(lián)盟2024-2025學(xué)年高二下學(xué)期3月質(zhì)量檢測(cè)英語(yǔ)試題(原卷版+解析版)
- 公司美工個(gè)人上半年工作總結(jié)
- 血透室護(hù)士個(gè)人年終工作總結(jié)
- 2025建筑工程施工分包合同擴(kuò)展協(xié)議
- 《家用電器銷售管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)》2000字(論文)
- 酸及其性質(zhì)(第一課時(shí))課件九年級(jí)化學(xué)(2024)下冊(cè)
- 《高速公路服務(wù)區(qū)開放設(shè)置技術(shù)要求》
- 2024年度出國(guó)留學(xué)保證金保函2篇
- 簡(jiǎn)易窗戶安裝合同范例
- 長(zhǎng)江經(jīng)濟(jì)帶發(fā)展規(guī)劃綱要
- 污水處理廠提標(biāo)改造工程施工組織設(shè)計(jì)
- 國(guó)家安全教育高教-第六章堅(jiān)持以經(jīng)濟(jì)安全為基礎(chǔ)
- 信息檢索與利用課件 第7章 網(wǎng)絡(luò)信息檢索(上)
- 三方報(bào)關(guān)委托協(xié)議書模板
- 輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(電纜工程電氣專業(yè))
評(píng)論
0/150
提交評(píng)論