高中必修一數(shù)學(xué)5篇_第1頁
高中必修一數(shù)學(xué)5篇_第2頁
高中必修一數(shù)學(xué)5篇_第3頁
高中必修一數(shù)學(xué)5篇_第4頁
高中必修一數(shù)學(xué)5篇_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1/1高中必修一數(shù)學(xué)(必備5篇)

高中必修一數(shù)學(xué)第1篇函數(shù)的解析表達(dá)式,及函數(shù)定義域的求法

1、函數(shù)解析式子的求法

(1)、函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2)、求函數(shù)的解析式的主要方法有:

1)代入法:

2)待定系數(shù)法:

3)換元法:

4)拼湊法:

定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

3、相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時具備)

4、區(qū)間的概念:

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示

高中必修一數(shù)學(xué)第2篇數(shù)的有關(guān)概念

函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈

(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

(2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

函數(shù)的三要素:定義域、值域、對應(yīng)法則

函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

4、函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對稱變換。

(3)函數(shù)圖像變換的特點(diǎn):

1)函數(shù)y=f(x)關(guān)于X軸對稱y=-f(x)

2)函數(shù)y=f(x)關(guān)于Y軸對稱y=f(-x)

3)函數(shù)y=f(x)關(guān)于原點(diǎn)對稱y=-f(-x)

高中必修一數(shù)學(xué)第3篇集合的含義

集合的中元素的三個特性:

(1)元素的確定性,

(2)元素的互異性,

(3)元素的無序性,

集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

?注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

高中必修一數(shù)學(xué)第4篇?dú)w類記憶法

就是根據(jù)識記材料的性質(zhì)、特征及其內(nèi)在聯(lián)系,進(jìn)行歸納分類,以便幫助學(xué)生記憶大量的知識。比如,學(xué)完計(jì)量單位后,可以把學(xué)過的所有內(nèi)容歸納為五類:長度單位;面積單位;體積和容積單位;重量單位;時間單位。這樣歸類,能夠把紛紜復(fù)雜的事物系統(tǒng)化、條理化,易于記憶。

歌訣記憶法

就是把要記憶的數(shù)學(xué)知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準(zhǔn)頂點(diǎn),零線對著一邊,另一邊看度數(shù)。”再如,小數(shù)點(diǎn)位置移動引起數(shù)的大小變化,“小數(shù)點(diǎn)請你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個you,擴(kuò)大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤?!辈捎眠@種方法來記憶,學(xué)生不僅喜歡記,而且記得牢。

規(guī)律記憶法

即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來進(jìn)行記憶。比如,識記長度單位、面積單位、體積單位的化法和聚法?;ê途鄯ㄊ腔ツ媛?lián)系,即高級單位的數(shù)值進(jìn)率=低級單位的數(shù)值,低級單位的數(shù)值÷進(jìn)率=高級單位的數(shù)值。掌握了這兩條規(guī)律,化聚問題就迎刃而解了。規(guī)律記憶,需要學(xué)生開動腦筋對所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。

列表記憶法

就是把某些容易混淆的識記材料列成表格,達(dá)到記憶之目的。這種方法具有明顯性、直觀性和對比性。比如,要識記質(zhì)數(shù)、質(zhì)因數(shù)、互質(zhì)數(shù)這三個概念的區(qū)別,就可列成表來幫助學(xué)生記憶。

重點(diǎn)記憶法

隨著年齡的增長,所學(xué)的數(shù)學(xué)知識也越來越多,學(xué)生要想全面記住,既浪費(fèi)時間且記憶效果不佳。因此,要讓學(xué)生學(xué)會記憶重點(diǎn)內(nèi)容,學(xué)生在記住了重點(diǎn)內(nèi)容的基礎(chǔ)上,再通過推導(dǎo)、聯(lián)想等方法便可記住其他內(nèi)容了。比如,學(xué)習(xí)常見的數(shù)量關(guān)系:工作效率×工作時間=工作量。工作量÷工作效率=工作時間;工作量+工作時間=工作效率。這三者關(guān)系中只要記住了第一個數(shù)量關(guān)系,后面兩個數(shù)量關(guān)系就可根據(jù)乘法和除法的關(guān)系推導(dǎo)出來。這樣去記,減輕了學(xué)生記憶的負(fù)擔(dān),提高了記憶的效率。

高中必修一數(shù)學(xué)第5篇知識定位及復(fù)習(xí)策略

集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運(yùn)算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運(yùn)算是本章的重點(diǎn)內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點(diǎn),重點(diǎn)掌握集合的概念和運(yùn)算。

本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。

函數(shù)

知識定位及復(fù)習(xí)策略

函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)的思想方法貫穿了高中數(shù)學(xué)的始終。近幾年高考試題函數(shù)熱點(diǎn)之一是考查函數(shù)的定義域、值域、單調(diào)性、奇偶性以及函數(shù)的圖象。函數(shù)、方程、不等式關(guān)系密切,要學(xué)會對具體問題抽象概括、分析探索、透徹理解,從而構(gòu)造函數(shù),借助方程、不等式的知識,最終解決問題。實(shí)現(xiàn)函數(shù)、方程、不等式的溝通與轉(zhuǎn)化,是高考的又一熱點(diǎn)??疾楹瘮?shù)內(nèi)容的同時,用函數(shù)的思想觀點(diǎn)研究問題,以及數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論