阻尼最小二乘法_第1頁
阻尼最小二乘法_第2頁
阻尼最小二乘法_第3頁
阻尼最小二乘法_第4頁
阻尼最小二乘法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

阻尼最小二乘法(dampedleastsqures,又稱Levenberg-Marquardtalgorithm)theLevenberg-Marquardtalgorithm(LMA)[1]providesanumericalsolutiontotheproblemofminimizingafunction,generallynonlinear,overaspaceofparametersofthefunction.Theseminimizationproblemsariseespeciallyinleastsquarescurvefittingandnonlinearprogramming.TheLMAinterpolatesbetweentheGauss-Newtonalgorithm(GNA就是最小二乘)andthemethodofgradientdescent.TheLMAsmorerobustthantheGNA,whichmeansthatinmanycasesitfindsasolutionevenifitstartsveryfaroffthefinalminimum.Forwell-behavedfunctionsandreasonablestartingparameters,theLMAtendstobeabitslowerthantheGNA.LMAcanalsobeviewedasGauss-Newtonusingatrustregionapproach.However,theLMAfindsonlyalocalminimum,notaglobalminimum.^和最小二乘一樣。這是所有線性反演的通病。TheproblemTheprimaryapplicationoftheLevenber—Marquardtalgorithmisintheleastsquarescurvefittingproblem:givenasetofmempiricaldatumpairsofindependentanddependentvariables,(xi,yi),optimizetheparametersPofthemodelcurvef(x,p)sothatthesumofthesquaresofthedeviationsm=工也-0:/3)]2■i=lbecomesminimal.ThesolutionLikeothernumericminimizationalgorithms,theLevenberg-Marquardtalgorithmisaniterativeprocedure.Tostartaminimization,theuserhastoprovideaninitialguessfortheparametervector,p.Incaseswithonlyoneminimum,anuninformedstandardguesslikepT=(1,1,...,1)

willworkfine;incaseswithmultipleminima,thealgorithmconvergesonlyiftheinitialguessisalreadysomewhatclosetothefinalsolution.Ineachiterationstep,theparametervector,P,isreplacedbyanewestimate,P+estimate,P+5.Todeterminedthefunctions」'??「.二誨—■areapproximatedbytheirlinearizationsfgW+3)ef0,p)+Jidwhereisthegradient(row-vectorinthiscase)offwithrespecttop.Atitsminimum,thesumofsquares,S(p),thegradientofSwithrespectwillbezero.Theabovefirst-orderapproximationwillbezero.givesmstp+睥£皿—KsB)一如i=iOrinvectornotation,Takingthederivativewithrespecttodandsettingtheresulttozerogives:(JTJ)5=JT[y-f(/3)]whereJistheJacobianmatrixwhoseithrowequalsJ.,andwherefandyarevectorswithithcomponent,'3.andy”respectively.Thisisasetoflinearequationswhichcanbesolvedfor5.上面是傳統(tǒng)的最小二乘法的線性方程。

Levenberg'scontributionistoreplacethisequationbya"dampedversion",(JTJ+AI)J=JT[y-f(/3)]whereIistheidentitymatrix,givingastheincrement,S,totheestimatedparametervector,fi.ofSwithrespecttopequalsvaluesof入,thestepwillbetakenapproximatelyinthedirectionofthegradient.Ifeitherthelengthofthecalculatedstep,6,orthereductionofsumofsquaresfromthelatestparameterfallbelowpredefinedlimits,iterationstopsandthevector,p,isconsideredtobethesolution.The(non-negative)dampingfactor,入,isadjustedateachiteration.IfreductionofSisrapid,asmallervaluecanbeused,bringingthealgorithmclosertotheGauss-Newtonalgorithm,whereasifaniterationgivesinsufficientreductionintheresidual,ofSwithrespecttopequalsvaluesof入,thestepwillbetakenapproximatelyinthedirectionofthegradient.Ifeitherthelengthofthecalculatedstep,6,orthereductionofsumofsquaresfromthelatestparameterfallbelowpredefinedlimits,iterationstopsandthevector,p,isconsideredtobethesolution.vector,p+6,lastparameterLevenbergsalgorithmhasthedisadvantagethatifthevalueofdampingfactor,入,islarge,JTJ+入Iisnotusedatall.Marquardtprovidedtheinsightthatwecanscaleeachcomponentofthegradientaccordingtothecurvaturesothatthereislargermovementalongthedirectionswherethegradientissmaller.Thisavoidsslowconvergenceinthedirectionofsmallgradient.Therefore,Marquardtreplacedtheidentitymatrix,I,withthediagonalmatrixconsistingofthediagonalelementsofJTJ,resultingintheLevenberg-Marquardtalgorithm:(J*+Adiag(jTj))B=JT[y-f(/3)].ChoiceofdampingparameterVariousmore-or-lessheuristicargumentshavebeenputforwardforthebestchoiceforthedampingparameter入.Theoreticalargumentsexistshowingwhysomeofthesechoicesguaranteedlocalconvergenceofthealgorithm;howeverthesechoicescanmaketheglobalconvergenceofthealgorithmsufferfromtheundesirablepropertiesofsteepest-descent,inparticularveryslowconvergenceclosetotheoptimum.Theabsolutevaluesofanychoicedependsonhowwell-scaledtheinitial

problemis.Marquardtrecommendedstartingwithavalue\0andafactorv>1.Initiallysetting入二入0andcomputingtheresidualsumofsquaresS(p)afteronestepfromthestartingpointwiththedampingfactorof入二入0andsecondlywith入0/v.Ifbothoftheseareworsethantheinitialpointthenthedampingisincreasedbysuccessivemultiplicationbyvuntilabetterpointisfoundwithanewdampingfactor。仇0vkforsomek.asdampingfactor.Ifuseofthedampingfactor入/vresultsinareductioninsquaredresidualthenthisistakenasthenewvalueof\(andthenewoptimumlocationistakenasthatobtainedwiththisdampingfactor)andtheprocesscontinues;ifusing入/vresultedinaworseresidual,butusing入resultedinabetterresidualthen入isleftunchangedandthenewoptimumistakenasthevalueobtainedwith入asdampingfactor.Exampleacos(bX)+bsin(aX)usinginGNUOctaveastheInthisexamplewetrytofitthefunctiony=theLevenberg-Marquardtalgorithmimplementedleasqrfunction.The3graphsFig1,2,3showprogressivelybetterfittingfortheparametersa=100,b=102usedintheinitialcurve.OnlywhentheparametersinFig

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論