




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省實驗中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示的程序框圖,若執(zhí)行的運算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.2.已知平面向量,,,,在下列命題中:①存在唯一的實數(shù),使得;②為單位向量,且,則;③;④與共線,與共線,則與共線;⑤若且,則.正確命題的序號是()A.①④⑤ B.②③④ C.①⑤ D.②③3.已知函數(shù),則()A.2 B.-2 C.1 D.-14.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.5.已知函數(shù)的定義域為,當時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為()A.4037 B.4038 C.4027 D.40286.直線過且在軸與軸上的截距相等,則的方程為()A. B.C.和 D.7.如圖,設(shè)A、B兩點在河的兩岸,一測量者在A的同側(cè),在所在河岸邊選定一點C,測出AC的距離為502m,∠ACB=45°,∠CAB=105A.100m B.50C.1002m8.如圖,中,分別是邊的中點,與相交于點,則(
)A. B.C. D.9.過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為()A. B. C. D.10.用數(shù)學(xué)歸納法證明n+1n+2?n+n=-2A.2k+1 B.22k+1 C.2k+1k+1二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)12.方程的解為______.13.函數(shù)的單調(diào)遞增區(qū)間為______.14.圓臺兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.15.數(shù)列定義為,則_______.16.函數(shù)的定義域記作集合,隨機地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標有點數(shù),,,),記骰子向上的點數(shù)為,則事件“”的概率為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.2021年廣東新高考將實行“”模式,即語文、數(shù)學(xué)、英語必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共選六科參加高考.其中偏理方向是二選一時選物理,偏文方向是二選一時選歷史,對后四科選擇沒有限定.(1)小明隨機選課,求他選擇偏理方向及生物學(xué)科的概率;(2)小明、小吳同時隨機選課,約定選擇偏理方向及生物學(xué)科,求他們選課相同的概率.18.如圖,在△ABC中,cosC=,角B的平分線BD交AC于點D,設(shè)∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的長.19.解關(guān)于不等式:20.總書記在黨的十九大報告中指出,要在“幼有所育、學(xué)有所教、勞有所得、病有所醫(yī)、老有所養(yǎng)、住有所居、弱有所扶”上不斷取得新進展,保證全體人民在共建共享發(fā)展中有更多獲得感.現(xiàn)S市政府針對全市10所由市財政投資建設(shè)的敬老院進行了滿意度測評,得到數(shù)據(jù)如下表:敬老院ABCDEFGHIK滿意度x(%)20342519262019241913投資原y(萬元)80898978757165626052(1)求投資額關(guān)于滿意度的相關(guān)系數(shù);(2)我們約定:投資額關(guān)于滿意度的相關(guān)系數(shù)的絕對值在0.75以上(含0.75)是線性相關(guān)性較強,否則,線性相關(guān)性較弱.如果沒有達到較強線性相關(guān),則采取“末位淘汰”制(即滿意度最低的敬老院市財政不再繼續(xù)投資,改為區(qū)財政投資).求在剔除“末位淘汰”的敬老院后投資額關(guān)于滿意度的線性回歸方程(系數(shù)精確到0.1)參考數(shù)據(jù):,,,,.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.線性相關(guān)系數(shù).21.(1)己知直線,求與直線l平行且到直線l距離為2的直線方程;(2)若關(guān)于x的不等式的解集是的子集,求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:解:運行第一次:,不成立;運行第二次:,不成立;運行第三次:,不成立;運行第四次:,不成立;運行第四次:,成立;輸出所以應(yīng)選D.考點:循環(huán)結(jié)構(gòu).2、D【解析】
分別根據(jù)向量的平行、模、數(shù)量積即可解決?!驹斀狻慨敒榱阆蛄繒r不滿足,①錯;當為零向量時④錯,對于⑤:兩個向量相乘,等于模相乘再乘以夾角的余弦值,與有可能夾角不一樣或者的模不一樣,兩個向量相等要保證方向、模都相同才可以,因此選擇D【點睛】本題主要考查了向量的共線,零向量。屬于基礎(chǔ)題。3、B【解析】
根據(jù)分段函數(shù)的表達式,直接代入即可得到結(jié)論.【詳解】由分段函數(shù)的表達式可知,則,故選:.【點睛】本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達式求解是解決本題的關(guān)鍵,屬于容易題.4、A【解析】
先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.5、A【解析】
由,對任意的實數(shù),等式恒成立,且,得到an+1=an+2,由等差數(shù)列的定義求得結(jié)果.【詳解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)?f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,則f(﹣1)?f(0)=f(﹣1),∵當x<0時,f(x)>1,∴f(﹣1)≠0,則f(0)=1,則f(an+1)f(﹣2﹣an)=1,等價為f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),則an+1﹣2﹣an=0,∴an+1﹣an=2.∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列,首項a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故選:A【點睛】本題主要考查數(shù)列與函數(shù)的綜合運用,根據(jù)抽象函數(shù)的關(guān)系結(jié)合等差數(shù)列的通項公式建立方程是解決本題的關(guān)鍵,屬于中檔題.6、B【解析】
對直線是否過原點分類討論,若直線過原點滿足題意,求出方程;若直線不過原點,在軸與軸上的截距相等,且不為0,設(shè)直線方程為將點代入,即可求解.【詳解】若直線過原點方程為,在軸與軸上的截距均為0,滿足題意;若直線過原點,依題意設(shè)方程為,代入方程無解.故選:B.【點睛】本題考查直線在上的截距關(guān)系,要注意過原點的直線在軸上的截距是軸上的截距的任意倍,屬于基礎(chǔ)題.7、A【解析】
計算出ΔABC三個角的值,然后利用正弦定理可計算出AB的值.【詳解】在ΔABC中,AC=502m,∠ACB=45°,由正弦定理得ABsin∠ACB=ACsin【點睛】本題考查正弦定理解三角形,要熟悉正弦定理解三角形對三角形已知元素類型的要求,考查運算求解能力,屬于基礎(chǔ)題.8、C【解析】
利用向量的加減法的法則,利用是的重心,進而得出,再利用向量的加減法的法則,即可得出答案.【詳解】由題意,點分別是邊的中點,與相交于點,所以是的重心,則,又因為,所以故答案為C【點睛】本題主要考查了向量的線性運算,以及三角形重心的性質(zhì),其中解答中熟記三角形重心的性質(zhì),以及向量的線性運算法則是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解析】
設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當點C在坐標原點時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當點C在坐標原點時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點睛】本題考查雙曲線的簡單性質(zhì),分析得到當點C在坐標原點時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.10、B【解析】
要分清起止項,以及相鄰兩項的關(guān)系,由此即可分清增加的代數(shù)式?!驹斀狻慨攏=k時,左邊=k+1當n=k+1時,左邊====k+1∴從k到k+1,左邊需要增乘的代數(shù)式為22k+1【點睛】本題主要考查學(xué)生如何理解數(shù)學(xué)歸納法中的遞推關(guān)系。二、填空題:本大題共6小題,每小題5分,共30分。11、①③④⑤【解析】
設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.12、或【解析】
由指數(shù)函數(shù)的性質(zhì)得,由此能求出結(jié)果.【詳解】方程,,或,解得或.故答案為或.【點睛】本題考查指數(shù)方程的解的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運用.13、【解析】
令,解得的范圍即為所求的單調(diào)區(qū)間.【詳解】令,,解得:,的單調(diào)遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解問題,關(guān)鍵是能夠采用整體對應(yīng)的方式,結(jié)合正弦函數(shù)的單調(diào)區(qū)間來進行求解.14、63【解析】
首先畫出軸截面,然后結(jié)合圓臺的性質(zhì)和軸截面整理計算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點睛】本題主要考查圓臺的空間結(jié)構(gòu)特征及相關(guān)元素的計算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.15、【解析】
由已知得兩式,相減可發(fā)現(xiàn)原數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,分類討論分別算出奇數(shù)項的和和偶數(shù)項的和,再相加得原數(shù)列前的和【詳解】兩式相減得數(shù)列的奇數(shù)項,偶數(shù)項分別成等差數(shù)列,,,,數(shù)列的前2n項中所有奇數(shù)項的和為:,數(shù)列的前2n項中所有偶數(shù)項的和為:【點睛】對于遞推式為,其特點是隔項相減為常數(shù),這種數(shù)列要分類討論,分偶數(shù)項和奇數(shù)項來研究,特別注意偶數(shù)項的首項為,而奇數(shù)項的首項為.16、【解析】要使函數(shù)有意義,則且,即且,即,隨機地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點數(shù)為,則,則事件“”的概率為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用列舉法,列舉出偏理方向和偏文方向的所有情況,即可求得小明選擇偏理方向且選擇了生物學(xué)科的概率.(2)利用列舉法,列舉出兩個人選擇偏理方向且?guī)в猩飳W(xué)科的所有可能,即可求得兩人選課相同的概率.【詳解】(1)由題意知,選六科參加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六種選擇;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六種選擇.由以上可知共有12種選課模式.小明選擇偏理方向又選擇生物的概率為.(2)小明選擇偏理且有生物學(xué)科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三種選擇,同樣小吳也是三種選擇;兩人選課模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9種選課法,兩人選課相同有三種,所以兩人選課相同的概率.【點睛】本題考查了古典概型概率的求法,利用列舉法寫出所有可能即可求解,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)根據(jù)二倍角公式及同角基本關(guān)系式,求出cos∠ABC,進而可求出sinA;(2)根據(jù)正弦定理求出AC,BC的關(guān)系,利用向量的數(shù)量積公式求出AC,可得BC,正弦定理可得答案.【詳解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,則sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又?AC2?21,∴AC=5,∴ABAC=4.【點睛】本題考查了二倍角公式、同角基本關(guān)系式和正弦定理的靈活運用和計算能力,是中檔題.19、當時,;當時,;當時,;當時,;當時,【解析】試題分析:當時,;當時,當時,;當時,;當時,考點:解不等式點評:本題中的不等式帶有參數(shù),在求解時需對參數(shù)做適當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級語文下冊 第二單元 比較 探究《游園不值》教學(xué)設(shè)計 北師大版
- 2024-2025學(xué)年高中物理 第二章 固體、液體和氣體 第8節(jié) 氣體實驗定律(Ⅱ)教學(xué)設(shè)計 粵教版選修3-3
- 七年級地理下冊 8.3 俄羅斯教學(xué)設(shè)計 (新版)湘教版
- 九年級化學(xué)下冊 8.2 金屬的化學(xué)性質(zhì)教學(xué)設(shè)計 新人教版
- 七年級歷史下冊 第二單元 遼宋夏金元時期:民族關(guān)系發(fā)展和社會變化 第12課 宋元時期的都市和文化教學(xué)設(shè)計 新人教版
- 5《鋪滿金色巴掌的水泥道》教學(xué)設(shè)計-2024-2025學(xué)年語文三年級上冊統(tǒng)編版
- 1《學(xué)習伴我成長》 第2課時 (教學(xué)設(shè)計)-2024-2025學(xué)年道德與法治三年級上冊統(tǒng)編版
- Module 2(教學(xué)設(shè)計)-2023-2024學(xué)年外研版(一起)英語三年級下冊
- 2 樹之歌(教學(xué)設(shè)計)-2024-2025學(xué)年統(tǒng)編版語文二年級上冊
- 2024-2025學(xué)年高中語文 第2單元 單元導(dǎo)讀教學(xué)設(shè)計 新人教版必修1
- 2025年職業(yè)指導(dǎo)師專業(yè)能力測試卷:職業(yè)指導(dǎo)服務(wù)與心理咨詢
- 學(xué)校安全管理制度匯編
- 2025-2030中國化妝棉行業(yè)市場深度調(diào)研及發(fā)展策略研究報告
- 【版】(4月4日)清明守規(guī)平安同行- 清明節(jié)假期安全教育主題班會 高中主題班會課件
- 2024年安慶迎江區(qū)招聘社區(qū)工作人員考試真題
- 信息技術(shù)公司成本控制措施
- 貿(mào)易安全培訓(xùn)
- 2025年長春汽車職業(yè)技術(shù)大學(xué)單招職業(yè)技能測試題庫必考題
- 血小板減少怎預(yù)防出血
- 2025年湖南省長沙市一中教育集團中考一模數(shù)學(xué)試題(原卷版+解析版)
- 口腔科感染控制策略與措施實施指南
評論
0/150
提交評論