




已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
銀行管理論文-企業(yè)財(cái)務(wù)危機(jī)預(yù)警應(yīng)確立的指標(biāo)體系摘要:財(cái)務(wù)危機(jī)的出現(xiàn)意味著企業(yè)基本面發(fā)生根本性變化,處理不當(dāng)就會(huì)導(dǎo)致企業(yè)破產(chǎn)。因此,識(shí)別企業(yè)財(cái)務(wù)危機(jī),并對(duì)其做出預(yù)警,不僅對(duì)企業(yè)經(jīng)營者及時(shí)采取措施化解危機(jī)具有重大的意義,而且對(duì)于投資者規(guī)避風(fēng)險(xiǎn)也有非常重要的價(jià)值。關(guān)鍵詞:財(cái)務(wù)危機(jī);預(yù)警;指標(biāo)體系一、引言“財(cái)務(wù)危機(jī)”又稱財(cái)務(wù)困境,最嚴(yán)重的財(cái)務(wù)危機(jī)是企業(yè)破產(chǎn)。企業(yè)因財(cái)務(wù)危機(jī)最終導(dǎo)致破產(chǎn)實(shí)際上是一種違約行為,所以財(cái)務(wù)危機(jī)又可稱為“違約風(fēng)險(xiǎn)”。關(guān)于財(cái)務(wù)危機(jī)的定義,目前尚無一個(gè)統(tǒng)一的說法。具有代表性的觀點(diǎn)有以下幾種:(1)Beaver(1966)將破產(chǎn)、拖欠優(yōu)先股股利、拖欠債務(wù)界定為財(cái)務(wù)危機(jī)。(2)Altman(1968)定義的財(cái)務(wù)危機(jī)是進(jìn)入法定破產(chǎn)、被接管或者重整的企業(yè)。(3)Deakin(1972)則認(rèn)為財(cái)務(wù)危機(jī)公司僅包括已經(jīng)經(jīng)歷破產(chǎn)、無力償債或?yàn)閭鶛?quán)人利益而已經(jīng)進(jìn)行清算的公司。(4)Carmichael(1972)認(rèn)為財(cái)務(wù)危機(jī)是企業(yè)履行義務(wù)時(shí)受阻,具體表現(xiàn)為流動(dòng)性不足、權(quán)益不足、債務(wù)拖欠及資金不足四種形式。(5)Wruck(1990)給出的財(cái)務(wù)危機(jī)的定義是企業(yè)現(xiàn)金流量不足以抵償現(xiàn)有債務(wù)的情況,這些債務(wù)包括應(yīng)付未付款、訴訟費(fèi)用、違約的利息和本金等。(6)Ross等人(1999;2000)則認(rèn)為可從四個(gè)方面定義企業(yè)的財(cái)務(wù)危機(jī):一是企業(yè)失敗,即企業(yè)清算后仍無力支付債權(quán)人的債務(wù);二是法定破產(chǎn),即企業(yè)和債權(quán)人向法院申請(qǐng)企業(yè)破產(chǎn);三是技術(shù)破產(chǎn),即企業(yè)無法按期履行債務(wù)合約付息還本;四是會(huì)計(jì)破產(chǎn),即企業(yè)的賬面凈資產(chǎn)出現(xiàn)負(fù)數(shù),資不抵債。(7)Lee(2004)認(rèn)為可以從兩方面定義財(cái)務(wù)危機(jī):一是未能償還到期借款的本息,借款期間有過延期還款和減少本息支付的協(xié)議;二是公司的凈資產(chǎn)減少到其股本的一半以下。綜合上述各種定義可知,無論財(cái)務(wù)危機(jī)如何定義,企業(yè)發(fā)生財(cái)務(wù)危機(jī)都具有無力償還到期債務(wù)、現(xiàn)金流的緊張狀態(tài)可能使經(jīng)營無法持續(xù)的特點(diǎn)。財(cái)務(wù)危機(jī)的出現(xiàn)意味著企業(yè)基本面發(fā)生根本性變化,處理不當(dāng)就會(huì)導(dǎo)致企業(yè)破產(chǎn)。因此,識(shí)別企業(yè)財(cái)務(wù)危機(jī),并對(duì)其做出預(yù)警,不僅對(duì)企業(yè)經(jīng)營者及時(shí)采取措施化解危機(jī)具有重大的意義,而且對(duì)于投資者規(guī)避風(fēng)險(xiǎn)也有非常重要的價(jià)值。二、文獻(xiàn)綜述企業(yè)財(cái)務(wù)危機(jī)預(yù)警問題的研究很早就引起了各方面的關(guān)注,很多經(jīng)濟(jì)學(xué)家與財(cái)務(wù)專家都在這方面做了大量的工作,他們利用相應(yīng)的財(cái)務(wù)變量構(gòu)造了一系列的預(yù)測模型,其中有代表性的研究成果可歸納為四類。(一)單變量模型單變量模型是運(yùn)用單一變數(shù)、個(gè)別財(cái)務(wù)比率來預(yù)測財(cái)務(wù)危機(jī)的模型。最早的財(cái)務(wù)預(yù)警研究是Fitzpatrick(1932)的單變量破產(chǎn)預(yù)測研究。此后,WilliamBeaver(1966)使用單變量為分析方法,采用成對(duì)抽樣法進(jìn)行樣本配對(duì),考察了29個(gè)財(cái)務(wù)比率在企業(yè)陷入財(cái)務(wù)困境前1-5年的預(yù)測能力。Beaver發(fā)現(xiàn)在破產(chǎn)前一年的預(yù)測正確率可以達(dá)到87%,對(duì)于失敗企業(yè)是最具有預(yù)測能力的指標(biāo)。國內(nèi)學(xué)者對(duì)單變量模型也作了較深入的研究,包括陳靜(1999)以1998年的27家ST公司和27家非ST公司,使用1995-1997年的財(cái)務(wù)報(bào)表數(shù)據(jù),進(jìn)行了單變量分析。吳世農(nóng)和盧賢義(2001)以70家ST公司和70家非ST公司,應(yīng)用單變量分析法研究了在上市公司陷入財(cái)務(wù)危機(jī)前5年21個(gè)財(cái)務(wù)指標(biāo)之間所存在的差異。單變量模型的優(yōu)點(diǎn)是只需要觀測一個(gè)變量,應(yīng)用比較簡單;但是,任何一個(gè)財(cái)務(wù)比率無法充分和全面地反映企業(yè)的財(cái)務(wù)特征,所以該方法在現(xiàn)今的研究中很少被單獨(dú)使用,一般都是與其他方法結(jié)合運(yùn)用。(二)多變量分析模型多變量分析模型又可以分為多元回歸分析模型和多元判別分析模型。EdwardAltman(1968)使用多變量分析法對(duì)企業(yè)財(cái)務(wù)危機(jī)進(jìn)行研究。他以1946-1965年間33家破產(chǎn)的制造業(yè)企業(yè)為樣本,并配對(duì)33家正常企業(yè),將22項(xiàng)財(cái)務(wù)比率分為流動(dòng)性、獲利性、財(cái)務(wù)杠桿、償債能力和活動(dòng)力五大類指數(shù),利用多變量分析法建立了著名的Z-Score記分模型。Meyer和Pifer(1970)以1948-1965年間失敗的30家銀行與其相匹配的30家非失敗銀行為樣本,利用二元回歸分析法建立模型,并且用9對(duì)相匹配銀行組成的預(yù)測樣本對(duì)模型進(jìn)行了驗(yàn)證。此外,還有其他典型的判別分析模型,包括:Deakin模型、Blum模型、Casey模型和Taffler模型等等。國內(nèi)的相關(guān)研究主要有陳靜(1999)使用1995-1997年的財(cái)務(wù)數(shù)據(jù),對(duì)27家ST公司和27家非ST公司進(jìn)行的多元判別分析。張玲(2000)以120家公司為研究對(duì)象,使用其中60家公司的財(cái)務(wù)數(shù)據(jù),通過多元判別法建立了財(cái)務(wù)危機(jī)預(yù)警模型。盧守林等(2002)以滬深兩市A股市場上所有上市公司1998-2000年的財(cái)務(wù)資料為依據(jù),用多元判別分析法構(gòu)建的Z-Score模型。多變量分析法彌補(bǔ)了單變量分析法的不足,具有較高的準(zhǔn)確率和穩(wěn)定性,但是也存在著一些不足:第一,這種方法受到了統(tǒng)計(jì)假設(shè)的限制,只適用于自變量近似服從正態(tài)分布的情況,并且要求組內(nèi)的協(xié)方差矩陣相等,否則得到的預(yù)測結(jié)果可能是有偏的;第二,多元判別分析要求財(cái)務(wù)危機(jī)公司與正常公司之間一定要配對(duì),而配對(duì)的標(biāo)準(zhǔn)具有較大的主觀性。(三)多元條件概率模型多元條件概率模型是使用極大似然法對(duì)參數(shù)進(jìn)行估計(jì)的一類概率模型,包括Logistic模型和Probit模型。Martin(1977)首次使用Logit模型預(yù)測公司的破產(chǎn)及違約概率。Ohlson(1980)從1970-1976年間在美國的上市公司之中排除公共事業(yè)、運(yùn)輸公司、金融服務(wù)業(yè),總共挑選出105家破產(chǎn)公司和2058家正常公司為樣本,采用九個(gè)財(cái)務(wù)比率建立了Logit模型。Huffman&Ward(1996)運(yùn)用Logit模型對(duì)1977-1991年間違約的171家企業(yè)的高收益?zhèn)M(jìn)行了預(yù)測研究等。國內(nèi)的相關(guān)研究主要包括:吳世農(nóng)和盧賢義(2001)分別采用多元判別分析和Logit回歸方法建立和估計(jì)了預(yù)警模型。劉旻(2001)使用1999年28家ST公司與另外28家正常公司陷入財(cái)務(wù)危機(jī)前3年的數(shù)據(jù),通過Logit回歸方法建立了財(cái)務(wù)危機(jī)預(yù)警模型。姜秀華(2002)和齊治平(2002)利用Logit模型對(duì)我國上市公司進(jìn)行信用風(fēng)險(xiǎn)分析。李萌(2005)以不良貸款率作為信用風(fēng)險(xiǎn)衡量標(biāo)準(zhǔn),構(gòu)造商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估的Logit模型等。多元條件概率模型的主要優(yōu)點(diǎn)是不需要自變量服從多元正態(tài)分布和組內(nèi)協(xié)方差矩陣相等的假設(shè)條件,但是要求因變量有邏輯含義,而且計(jì)算過程較為復(fù)雜,有很多近似處理。(四)神經(jīng)網(wǎng)絡(luò)預(yù)警模型神經(jīng)網(wǎng)絡(luò),又稱人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwork,ANN)是一種從神經(jīng)心理學(xué)和認(rèn)識(shí)科學(xué)的研究成果出發(fā),應(yīng)用數(shù)學(xué)方法發(fā)展起來的并行分布模式處理系統(tǒng)。常見的神經(jīng)網(wǎng)絡(luò)模型主要有:BP神經(jīng)網(wǎng)絡(luò)模型、MDA協(xié)助神經(jīng)網(wǎng)絡(luò)模型、ID3協(xié)助神經(jīng)網(wǎng)絡(luò)模型和SOFM協(xié)助神經(jīng)網(wǎng)絡(luò)模型。Odom和Sharda(1990)是將人工神經(jīng)網(wǎng)絡(luò)模型應(yīng)用在破產(chǎn)預(yù)測模式中最具代表性的學(xué)者。Koh和Tan(1999)以1978-1985年間出現(xiàn)的165家破產(chǎn)公司為失敗樣本并以正常公司165家作為配對(duì)樣本,使用人工神經(jīng)網(wǎng)絡(luò)模型構(gòu)建了企業(yè)危機(jī)預(yù)警模型。在我國,王春峰(1998)、楊保安(2001)等學(xué)者也在此領(lǐng)域進(jìn)行了深入的研究,楊保安通過對(duì)中信實(shí)業(yè)銀行的分析,選取了4大類共15個(gè)財(cái)務(wù)指標(biāo),運(yùn)用BP神經(jīng)網(wǎng)絡(luò)方法建立了一個(gè)可供銀行用于授權(quán)評(píng)價(jià)的預(yù)警系統(tǒng)。臺(tái)灣的林文修(2000)選取1992-1996年在臺(tái)灣證交所上市企業(yè)中的36家失敗企業(yè)和64家正常企業(yè),并區(qū)分為學(xué)習(xí)樣本73家與測試樣本27家,比較了多元判別分析、Logit模型、BP神經(jīng)網(wǎng)絡(luò)模型和演化式神經(jīng)網(wǎng)絡(luò)模型等四種方法的模型預(yù)測準(zhǔn)確率。神經(jīng)網(wǎng)絡(luò)預(yù)警模型的主要優(yōu)點(diǎn)是分析層次清晰且邏輯關(guān)系嚴(yán)密,并依據(jù)心理學(xué)理論加入了一主觀因素,從而有效地使客觀分析與主觀判斷相融合。它的缺點(diǎn)是規(guī)范分析特點(diǎn)明顯,不適宜做實(shí)證分析,分析模式缺乏靈活性,數(shù)據(jù)性假設(shè)條件過于苛刻。三、財(cái)務(wù)危機(jī)預(yù)警的指標(biāo)體系設(shè)計(jì)導(dǎo)致企業(yè)發(fā)生財(cái)務(wù)危機(jī)的因素很多,且錯(cuò)綜復(fù)雜,單變量模型與多變量模型僅能揭示影響關(guān)系與程度,變量的選擇會(huì)因分析人員偏好的不同而不同,其不僅缺乏統(tǒng)一的理論基礎(chǔ),而且系統(tǒng)性往往較差,多元條件概率模型和神經(jīng)網(wǎng)絡(luò)預(yù)警模型雖然在分析技術(shù)上較為先進(jìn),且分析企圖試圖更精確,但它們?cè)趶?qiáng)調(diào)分析技術(shù)的同時(shí),往往忽略了立論的基本依據(jù),且在變量選擇中往往伴隨較明顯的盲目性。因此,作為完善多變量模型系統(tǒng)性功能,為多元條件概率模型和神經(jīng)網(wǎng)絡(luò)預(yù)警模型提供變量選擇的依據(jù),利用相應(yīng)的財(cái)務(wù)理論構(gòu)建企業(yè)財(cái)務(wù)危機(jī)預(yù)警指標(biāo)體系就是研究企業(yè)財(cái)務(wù)危機(jī)的基礎(chǔ)之基礎(chǔ)。但從財(cái)務(wù)本身的角度去分析,財(cái)務(wù)危機(jī)形成的原因可以歸結(jié)為以下幾點(diǎn):(1)公司經(jīng)營狀況不佳,導(dǎo)致營業(yè)收入無法穩(wěn)定增長,造成公司的連續(xù)虧損,使得財(cái)務(wù)危機(jī)發(fā)生的可能性增大;(2)過高的負(fù)債使公司面臨更大的財(cái)務(wù)危機(jī)。雖然公司本身有盈余,但是可能因?yàn)闊o法應(yīng)付短期的龐大利息支出而造成破產(chǎn)倒閉;(3)現(xiàn)金流量發(fā)生持續(xù)性的凈流出,企業(yè)就像是流動(dòng)性資產(chǎn)的儲(chǔ)水槽,若水槽中的流量變小(資產(chǎn)變少),流入量減少(現(xiàn)金流入減少),流出量增加(現(xiàn)金流出增加),流入量與流出量之間的差量就會(huì)逐步增大,這樣會(huì)使公司出現(xiàn)財(cái)務(wù)危機(jī)的概率增加。綜合引起財(cái)務(wù)危機(jī)的三個(gè)主要因素,可以對(duì)應(yīng)用五個(gè)方面的財(cái)務(wù)指標(biāo)來描述或預(yù)警財(cái)務(wù)危機(jī),用經(jīng)營能力指標(biāo)、成長能力指標(biāo)和獲利能力指標(biāo)來度量或反映企業(yè)的經(jīng)營狀況,用公司的償債能力指標(biāo)來度量或反映企業(yè)的債務(wù)負(fù)擔(dān),用現(xiàn)金流量指標(biāo)來度量現(xiàn)金流。從預(yù)警的角度考慮,五個(gè)方面的財(cái)務(wù)指標(biāo)可進(jìn)一步細(xì)分為20個(gè)更具體的財(cái)務(wù)變量(見表1),以此構(gòu)成財(cái)務(wù)危機(jī)預(yù)警的指標(biāo)體系。以深滬兩市A股中被ST的上市公司為實(shí)際考察對(duì)象,利用2006年1月1日-2007年12月31日深滬兩市A股中154家被ST的上市公司的數(shù)據(jù)。剔除由于以下幾種原因而被ST的上市公司:(1)上市兩年內(nèi)被特別處理的公司;(2)因自然災(zāi)害、重大事故等意外事件而被特別處理的公司。經(jīng)過剔除后,本文選取的有效樣本變?yōu)?0家。根據(jù)研究期間一致、行業(yè)相同或相近、規(guī)模相當(dāng)?shù)脑瓌t按1:1的比例選擇沒有被ST的上市公司作為配對(duì)樣本。由于我國上市公司年報(bào)披露制度規(guī)定上市公司公布其年報(bào)的截止日期為下一年的4月30日,上市公司(t-1)年的年報(bào)和其在第t年是否被ST幾乎同時(shí)發(fā)生,因此,用(t-1)年的數(shù)據(jù)預(yù)測第t年是否被ST沒有實(shí)際意義。在本文中采用(t-2)年的數(shù)據(jù)進(jìn)行分析。表6是財(cái)務(wù)危機(jī)公司和正常公司的成長能力指標(biāo)在發(fā)生財(cái)務(wù)危機(jī)前2年的統(tǒng)計(jì)性描述,包括最大值、最小值、平均數(shù)、標(biāo)準(zhǔn)差和t值。四、結(jié)論根據(jù)上述經(jīng)驗(yàn)值的計(jì)算結(jié)果可知,一般情況下,可以根據(jù)財(cái)務(wù)指標(biāo)的實(shí)際值來判斷企業(yè)是否陷入財(cái)務(wù)危機(jī),判斷的標(biāo)準(zhǔn)見表7。依據(jù)表7的標(biāo)準(zhǔn)可以得出結(jié)論。即在發(fā)生財(cái)務(wù)危機(jī)的前2年,正常公司和危機(jī)公司在獲利能力、償債能力、經(jīng)營能力、現(xiàn)金流量和成長能力的20個(gè)指標(biāo)中有15個(gè)指標(biāo)在5%的置信水平下通過了t檢驗(yàn),也就是說正常公司和危機(jī)公司在上述15個(gè)財(cái)務(wù)指標(biāo)的均值上存在著顯著性的差異。因此,只要發(fā)現(xiàn)企業(yè)對(duì)應(yīng)財(cái)務(wù)指標(biāo)變量的實(shí)際值有一個(gè)或多個(gè)落入預(yù)警區(qū)間,就必須引起我們高度的關(guān)注。參考文獻(xiàn):1劉紅霞.企業(yè)投資預(yù)警系統(tǒng)的構(gòu)建及其分析J.投資研究,2003(9).2陳靜.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025短期工勞動(dòng)合同范本
- 稅務(wù)風(fēng)險(xiǎn)防控
- 2025年消防安全知識(shí)培訓(xùn)考試題庫:消防行業(yè)職業(yè)道德與消防法律法規(guī)試題
- 塞爾維亞語中的語言與職業(yè)差異研究論文
- 地鐵乘務(wù)操作流程
- 2025制藥企業(yè)研發(fā)實(shí)驗(yàn)室技術(shù)合作合同案例
- 疫情防控的課件和教案
- 疫情防控的法治課件
- 2025-2030紅外線適配器行業(yè)市場發(fā)展分析及前景趨勢(shì)與投資研究報(bào)告
- 2025超市租賃合同樣本
- 數(shù)學(xué)教學(xué)的跨學(xué)科整合
- 藥食同源食品項(xiàng)目建議書
- 【抗腫瘤靶向藥物研究進(jìn)展綜述報(bào)告5500字】
- 拱橋施工方案包括
- 腦梗死治療癲癇
- 15D500-15D505 防雷與接地圖集(合訂本)
- 《阿片類藥物》課件
- 實(shí)用電工速算口訣
- 角鋼理論重量表
- 平衡計(jì)分卡-化戰(zhàn)略為行動(dòng)
- 縣責(zé)任督學(xué)掛牌督導(dǎo)工作手冊(cè)
評(píng)論
0/150
提交評(píng)論