滬科版圓周角_第1頁(yè)
滬科版圓周角_第2頁(yè)
滬科版圓周角_第3頁(yè)
滬科版圓周角_第4頁(yè)
滬科版圓周角_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、關(guān)于滬科版圓周角第一張,PPT共五十頁(yè),創(chuàng)作于2022年6月一. 復(fù)習(xí)引入:1.圓心角的定義?.OBC在同圓(或等圓)中,如果圓心角、弧、弦、弦心距有一組量相等,那么它們所對(duì)應(yīng)的其余兩個(gè)量都分別相等。答:頂點(diǎn)在圓心的角叫圓心角2.上節(jié)課我們學(xué)習(xí)了一個(gè)反映圓心角、弧、弦、弦心距四個(gè)量之間關(guān)系的一個(gè)結(jié)論,這個(gè)結(jié)論是什么?第二張,PPT共五十頁(yè),創(chuàng)作于2022年6月探索1:我們知道:頂點(diǎn)在圓心的角叫圓心角,當(dāng)圓心角的頂點(diǎn)發(fā)生變化時(shí),我們得到以下三種情況:A.OBC.OBCA.OBCA圓內(nèi)角圓外角圓周角探索第三張,PPT共五十頁(yè),創(chuàng)作于2022年6月oABC考考你:你能仿照?qǐng)A心角的定義,給下 圖中象A

2、CB 這樣的角下個(gè)定義嗎?頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角 第四張,PPT共五十頁(yè),創(chuàng)作于2022年6月 頂點(diǎn)在圓上,并且兩邊都和圓相交的角什么叫做圓周角?ABCDEO二、概念第五張,PPT共五十頁(yè),創(chuàng)作于2022年6月辯一辯 圖中的CDE是圓周角嗎?CDECDECDECDE第六張,PPT共五十頁(yè),創(chuàng)作于2022年6月65圓周角(一) 練習(xí)一:判斷下列各圖中,哪些是圓周角,為什么? oABoABoABoABoABoABoABoABoABCCCCCCCC圖1圖2圖3圖4圖5圖6圖7圖8圖9第七張,PPT共五十頁(yè),創(chuàng)作于2022年6月如圖是一個(gè)圓柱形的海洋館的橫截面的示意圖,人們可以通

3、過(guò)其中的圓弧形玻璃AB 觀看窗內(nèi)的海洋動(dòng)物,同學(xué)甲站在圓心的O 位置,同學(xué)乙站在正對(duì)著玻璃窗的靠墻的位置C,他們的視角(AOB 和ACB)有什么關(guān)系?如果同學(xué)丙、丁分別站在他靠墻的位置D和E,他們的視角( ADB 和AEB )和同學(xué)乙的視角相同嗎?二、觀察第八張,PPT共五十頁(yè),創(chuàng)作于2022年6月深入探究視角AOB和ACB有什么關(guān)系?即同弧所對(duì)的圓心角和圓周角的關(guān)系 ADB和AEB和ACB相等嗎?即同弧所對(duì)的圓周角之間的大小關(guān)系第九張,PPT共五十頁(yè),創(chuàng)作于2022年6月類比圓心角探知圓周角在同圓或等圓中,同弧或等弧所對(duì)的圓心角相等.在同圓或等圓中,同弧或等弧所對(duì)的圓周角有什么關(guān)系? 為了解

4、決這個(gè)問題,我們先探究同弧所對(duì)的圓周角和圓心角之間有的關(guān)系.你會(huì)畫同弧所對(duì)的圓周角和圓心角嗎?第十張,PPT共五十頁(yè),創(chuàng)作于2022年6月圓周角和圓心角的關(guān)系在O任取一個(gè)圓周角BCA,將圓對(duì)折,使折痕經(jīng)過(guò)圓心O和BCA的頂點(diǎn)C。由于點(diǎn)C的位置的取法可能不同,這時(shí)有三種情況:(1) 折痕是圓周角的一條邊,如圖(1) (2) 折痕在圓周角的內(nèi)部,如圖(2) (3) 折痕在圓周角的外部如圖(3) 第十一張,PPT共五十頁(yè),創(chuàng)作于2022年6月圓周角和圓心角的關(guān)系1.首先考慮一種特殊情況: 當(dāng)圓心(O)在圓周角(ABC)的一邊(BC)上時(shí),圓周角ABC與圓心角AOC的大小關(guān)系.AOC是ABO的外角,A

5、OC=B+A.OA=OB,OABCA=B.AOC=2B.即 ABC = AOC.根據(jù)以上證明你能得到什么結(jié)論? 第十二張,PPT共五十頁(yè),創(chuàng)作于2022年6月(1)圓心在圓周角的一邊上證明:OA=OCBACCBOCBAC+C=2BACBAC= BOC定理證明第十三張,PPT共五十頁(yè),創(chuàng)作于2022年6月2.考慮第二種情況 當(dāng)圓心(O)在圓周角(ABC)的內(nèi)部時(shí),圓周角ABC與圓心角AOC的大小關(guān)系會(huì)怎樣? 能否轉(zhuǎn)化為1的情況?過(guò)點(diǎn)B作直徑BD.由1可得:O ABC = AOC.根據(jù)以上證明你又能得到什么結(jié)論?ABCDABD = AOD,CBD = COD,圓周角和圓心角的關(guān)系第十四張,PPT共

6、五十頁(yè),創(chuàng)作于2022年6月(2)圓心在圓周角的內(nèi)部證明:連結(jié)AO并延長(zhǎng)交O于D點(diǎn)DA= O由()得BA= BOBCBBCB+C)第十五張,PPT共五十頁(yè),創(chuàng)作于2022年6月圓周角和圓心角的關(guān)系3.考慮第二種情況 當(dāng)圓心(O)在圓周角(ABC)的外部時(shí),圓周角ABC與圓心角AOC的大小關(guān)系會(huì)怎樣?能否也轉(zhuǎn)化為1的情況?過(guò)點(diǎn)B作直徑BD.由1可得:ODABD = AOD,CBD = COD,ABC ABC = AOC.根據(jù)以上證明你又能得到什么結(jié)論?第十六張,PPT共五十頁(yè),創(chuàng)作于2022年6月()圓心在圓周角的外部證明:連結(jié)AO并延長(zhǎng)交O于D點(diǎn)DA= O由()得BA= BOBCBBC)第十七

7、張,PPT共五十頁(yè),創(chuàng)作于2022年6月三.圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。思考:在同圓或等圓中,如果圓周角相等,所對(duì)的弧一定相等嗎?定理歸納.ABCDO弧等角等第十八張,PPT共五十頁(yè),創(chuàng)作于2022年6月結(jié) 論: 在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半相等的圓周角所對(duì)的弧也相等。圓周角定理第十九張,PPT共五十頁(yè),創(chuàng)作于2022年6月考眼力如圖,點(diǎn)A、B、C、D在同一個(gè)圓上,四邊形ABCD的對(duì)角線把4個(gè)內(nèi)角分成8個(gè)角,這些角中哪些是相等的角?1=42=73=65=8第二十張,PPT共五十頁(yè),創(chuàng)作于2

8、022年6月思 考如圖,線段AB是O的直徑,點(diǎn)C是O上任意一點(diǎn)(除點(diǎn)A、B),那么,ACB就是直徑AB所對(duì)的圓周角,想想看,ACB會(huì)是怎樣的角?OCBA90的圓周角所對(duì)的弦是什么? 半圓(或直徑)所對(duì)的圓周角是直角; 90的圓周角所對(duì)的弦是直徑推 論第二十一張,PPT共五十頁(yè),創(chuàng)作于2022年6月ABC1OC2C3定理 在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半相等的圓周角所對(duì)的弧也相等。定 理 半圓(或直徑)所對(duì)的圓周角是直角; 90的圓周角所對(duì)的弦是直徑推 論第二十二張,PPT共五十頁(yè),創(chuàng)作于2022年6月CODBA如圖:圓內(nèi)接四邊形ABCD中, BAD等于

9、弧BCD所對(duì)圓心角的一半,BCD等于弧BAD所對(duì)圓心角的一半.而弧BCD所對(duì)的圓心角+弧BAD所對(duì)的圓心角=360, BADBCD180. 同理ABCADC180.圓內(nèi)接四邊形的對(duì)角互補(bǔ).四邊形與圓的位置關(guān)系第二十三張,PPT共五十頁(yè),創(chuàng)作于2022年6月如果延長(zhǎng)BC到E,那么DCEBCD 180.ADCE.又 A BCD 180,CODBAE四邊形與圓的位置關(guān)系因?yàn)锳是與DCE相鄰的內(nèi)角DCB的對(duì)角,我們把A叫做DCE的內(nèi)對(duì)角.圓內(nèi)接四邊形的一個(gè)外角等于它的內(nèi)對(duì)角.第二十四張,PPT共五十頁(yè),創(chuàng)作于2022年6月試金石:2.如圖,圓心角AOB=100,則ACB=_。OABCBAO.70 x1

10、.求圓中角X的度數(shù)C第二十五張,PPT共五十頁(yè),創(chuàng)作于2022年6月3、如圖 AB是O的直徑, C ,D是圓上的兩點(diǎn),若ABD=40,則BCD=.ABOCD40第二十六張,PPT共五十頁(yè),創(chuàng)作于2022年6月4.如圖:OA、OB、OC都是O的半徑,且AOB=2BOC.求證:ACB=2BAC.AOBC第二十七張,PPT共五十頁(yè),創(chuàng)作于2022年6月5如圖5,求12345= 。 如圖6:已知弦AB、CD相交于P點(diǎn),且AOC=44、 BOD=46 求 APC 的度數(shù)。12345圖5OABCDP圖6第二十八張,PPT共五十頁(yè),創(chuàng)作于2022年6月例1 如圖,O直徑AB為10cm,弦AC為6cm,ACB

11、的平分線交O于D,求BC、AD、BD的長(zhǎng)又在RtABD中,AD2+BD2=AB2,解:AB是直徑, ACB= ADB=90在RtABC中,CD平分ACB,AD=BD.四、例題第二十九張,PPT共五十頁(yè),創(chuàng)作于2022年6月求證:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形(提示:作出以這條邊為直徑的圓.)ABCO求證: ABC 為直角三角形.證明:CO= AB,以AB為直徑作O,AO=BO,AO=BO=CO.點(diǎn)C在O上.又AB為直徑,ACB= 180= 90.已知:ABC 中,CO為AB邊上的中線,且CO= AB ABC 為直角三角形.練 習(xí)第三十張,PPT共五十頁(yè),創(chuàng)作于

12、2022年6月練習(xí):如圖 AB是O的直徑, C ,D是圓上的兩點(diǎn),若ABD=40,則BCD=.ABOCD40第三十一張,PPT共五十頁(yè),創(chuàng)作于2022年6月3、AB、AC為O的兩條弦,延長(zhǎng)CA到D,使 AD=AB,如果ADB=35 ,求BOC的度數(shù)。BOC =140 350700第三十二張,PPT共五十頁(yè),創(chuàng)作于2022年6月交流合作.ABC內(nèi)接于O ,BOC=80,則BAC等于( ).(A)80 (B) 40 (C) 140 (D) 40或140第三十三張,PPT共五十頁(yè),創(chuàng)作于2022年6月交流合作已知:如圖,AB=AC=AD, BAC=40,則BDC的度數(shù)為( )(A)40 (B)30

13、(C)20 (D)不能確定 ABCD第三十四張,PPT共五十頁(yè),創(chuàng)作于2022年6月交流合作15或 75 3在半徑為1的O中,弦AB、AC分別是則BAC的度數(shù)為第三十五張,PPT共五十頁(yè),創(chuàng)作于2022年6月交流合作4如圖,O1、O2相交于A、B兩點(diǎn),直線O1O2交兩圓于C、DO1AO2=40,則CBD等于( )(A)110 (B)120(C)130 (D)140 A第三十六張,PPT共五十頁(yè),創(chuàng)作于2022年6月課堂反饋1如圖,已知圓心角BOC100,則圓周角BAC的度數(shù)為( ) A、100 B、130 C、50 D、802圓內(nèi)接正三角形的一條邊所對(duì)的圓周角為( )A、30 B、60 C、3

14、0或150 D、60或1203如圖,A、B、C三點(diǎn)在O上,AOC=100,則ABC等于( ) A、140 B、110 C、120 D、130C第三十七張,PPT共五十頁(yè),創(chuàng)作于2022年6月課堂反饋4.若圓的一條弦把圓分成度數(shù)的比為13的兩條弧,則劣弧所對(duì)的圓周角的度數(shù)為( )A、45B、90C、135D、2705已知:如圖,ABC內(nèi)接于O,AD是O的直徑,ABC30,則CAD等于_。6 在O中,一條弦的長(zhǎng)度等于半徑,則它所對(duì)的圓周角的度數(shù)為_。7半徑為1的圓中有一條弦,如果它的長(zhǎng)為那么這條弦所對(duì)的圓A周角的度數(shù)等于 .6060或120 30或150 第三十八張,PPT共五十頁(yè),創(chuàng)作于2022

15、年6月弦AB分圓為l5兩部分,則弦AB所對(duì)的圓周角度數(shù)等于 9 已知:如圖,AB 為O的直徑,BED=35,則ACD= 。10圓內(nèi)接四邊形相鄰三個(gè)內(nèi)角之比是3:1:6,則這個(gè)四邊形的最大角的度數(shù)為 。ODABCE30或150 55 160 課堂反饋第三十九張,PPT共五十頁(yè),創(chuàng)作于2022年6月7 學(xué)以致用 作業(yè)適量 分層要求A層(基礎(chǔ)題) 如圖9,已知AB=AC=2cm, BDC=60,則ABC 的周長(zhǎng)是 。 如圖10:A是O的圓周角,A=40,求OBC 的度數(shù)。ABCDO圖9ABCO圖10第四十張,PPT共五十頁(yè),創(chuàng)作于2022年6月7 學(xué)以致用 作業(yè)適量 分層要求B層(中等題) 在O中,

16、BOC=100o,則弦BC所對(duì)的圓周角是 度。 如圖11,AD是O直徑,BC=CD,A=30,求B的度數(shù)。 ABCDO圖11第四十一張,PPT共五十頁(yè),創(chuàng)作于2022年6月7 學(xué)以致用 作業(yè)適量 分層要求C層(提高題) 如圖12,AB是O直徑,點(diǎn)C在圓上,BAC的平分線交圓于點(diǎn)E,OE交BC于點(diǎn)H,已知AC=6,AB=10,求HE的長(zhǎng)。ABCOHE圖12第四十二張,PPT共五十頁(yè),創(chuàng)作于2022年6月7 學(xué)以致用 作業(yè)適量 分層要求D層(課外延拓、承上啟下) 如圖13:“世界杯”賽場(chǎng)上李鐵、邵佳一、郝海東三名隊(duì)員互相配合向?qū)Ψ角蜷T進(jìn)攻,當(dāng)李帶球沖到如圖C點(diǎn)時(shí),邵、郝也分別跟隨沖到圖中的D點(diǎn)、E

17、點(diǎn),李應(yīng)把球傳給誰(shuí)好?請(qǐng)你從數(shù)學(xué)角度幫忙合情說(shuō)理、分析說(shuō)明。ABCDEO圖13球門第四十三張,PPT共五十頁(yè),創(chuàng)作于2022年6月能力提升1、在O中,CBD=30 ,BDC=20,求A第四十四張,PPT共五十頁(yè),創(chuàng)作于2022年6月1、在O中,CBD=30 ,BDC=20,求A能力提升第四十五張,PPT共五十頁(yè),創(chuàng)作于2022年6月 2、如圖,在O中,AB為直徑,CB = CF, 弦CGAB,交AB于D,交BF于E 求證:BE=EC能力提升第四十六張,PPT共五十頁(yè),創(chuàng)作于2022年6月4、在O中,一條弧所對(duì)的圓心角和圓周角分別為(2x+100)和(5x-30),則x=_ _;3. 如圖,在直徑為AB的半圓中,O為圓心,C、D 為半圓上的兩點(diǎn),COD=50,則 CAD=_;2025第四十七張,PPT共五十頁(yè),創(chuàng)作于2022年6月3、若圓的一條弦把圓分成度數(shù)的比為1:3的兩條弧,則劣弧所對(duì)的圓周角等于多少度。 4、如圖,BC為圓O的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論